Behavior of Keyword Spotting Networks Under Noisy Conditions

نویسندگان

چکیده

Keyword spotting (KWS) is becoming a ubiquitous need with the advancement in artificial intelligence and smart devices. Recent work this field have focused on several different architectures to achieve good results datasets low moderate noise. However, performance of these models deteriorates under high noise conditions as shown by our experiments. In paper, we present an extensive comparison between state-of-the-art KWS networks various noisy conditions. We also suggest adaptive batch normalization technique improve when files are unknown during training phase. The such characterization enable future developing that perform better aforementioned

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discriminative keyword spotting

This paper proposes a new approach for keyword spotting, which is not based on HMMs. The proposed method employs a new discriminative learning procedure, in which the learning phase aims at maximizing the area under the ROC curve, as this quantity is the most common measure to evaluate keyword spotters. The keyword spotter we devise is based on nonlinearly mapping the input acoustic representat...

متن کامل

An Application of Recurrent Neural Networks to Discriminative Keyword Spotting

Keyword spotting is a detection task consisting in discovering the presence of specific spoken words in unconstrained speech. The majority of keyword spotting systems are based on generative hidden Markov models and lack discriminative capabilities. However, discriminative keyword spotting systems are based on the estimation of a posteriori probabilities at the frame-level, hence they make use ...

متن کامل

Convolutional neural networks for small-footprint keyword spotting

We explore using Convolutional Neural Networks (CNNs) for a small-footprint keyword spotting (KWS) task. CNNs are attractive for KWS since they have been shown to outperform DNNs with far fewer parameters. We consider two different applications in our work, one where we limit the number of multiplications of the KWS system, and another where we limit the number of parameters. We present new CNN...

متن کامل

Convolutional Recurrent Neural Networks for Small-Footprint Keyword Spotting

Keyword spotting (KWS) constitutes a major component of human-technology interfaces. Maximizing the detection accuracy at a low false alarm (FA) rate, while minimizing the footprint size, latency and complexity are the goals for KWS. Towards achieving them, we study Convolutional Recurrent Neural Networks (CRNNs). Inspired by large-scale state-ofthe-art speech recognition systems, we combine th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Lecture Notes in Computer Science

سال: 2021

ISSN: ['1611-3349', '0302-9743']

DOI: https://doi.org/10.1007/978-3-030-86362-3_30