Behavior of Integral Curves of the Quasilinear Second Order Differential Equations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the stability of linear differential equations of second order

The aim of this paper is to investigate the Hyers-Ulam stability of the  linear differential equation$$y''(x)+alpha y'(x)+beta y(x)=f(x)$$in general case, where $yin C^2[a,b],$  $fin C[a,b]$ and $-infty

متن کامل

Recurrent metrics in the geometry of second order differential equations

Given a pair (semispray $S$, metric $g$) on a tangent bundle, the family of nonlinear connections $N$ such that $g$ is recurrent with respect to $(S, N)$ with a fixed recurrent factor is determined by using the Obata tensors. In particular, we obtain a characterization for a pair $(N, g)$ to be recurrent as well as for the triple $(S, stackrel{c}{N}, g)$ where $stackrel{c}{N}$ is the canonical ...

متن کامل

Kamenev-type Oscillation Criteria for Second-order Quasilinear Differential Equations

We obtain Kamenev-type oscillation criteria for the second-order quasilinear differential equation (r(t)|y′(t)|α−1y′(t))′ + p(t)|y(t)|β−1y(t) = 0 . The criteria obtained extend the integral averaging technique and include earlier results due to Kamenev, Philos and Wong.

متن کامل

The behavior of solutions of second order delay differential equations

In this paper, we study the behavior of solutions of second order delay differential equation y′′(t)= p1y′(t)+ p2y′(t − τ )+ q1y(t)+ q2y(t − τ ), where p1, p2, q1, q2 are real numbers, τ is positive real number. A basic theorem on the behavior of solutions is established. As a consequence of this theorem, a stability criterion is obtained. © 2006 Elsevier Inc. All rights reserved.

متن کامل

existence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types

بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی ‎‏بیان شد‎‎‏ه اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Procedia Engineering

سال: 2014

ISSN: 1877-7058

DOI: 10.1016/j.proeng.2014.03.063