Bayesian sparse convex clustering via global-local shrinkage priors

نویسندگان

چکیده

Abstract Sparse convex clustering is to group observations and conduct variable selection simultaneously in the framework of clustering. Although a weighted $$L_1$$ L 1 norm usually employed for regularization term sparse clustering, its use increases dependence on data reduces estimation accuracy if sample size not sufficient. To tackle these problems, this paper proposes Bayesian method based ideas lasso global-local shrinkage priors. We introduce Gibbs sampling algorithms our using scale mixtures normal distributions. The effectiveness proposed methods shown simulation studies real analysis.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shrinkage Priors for Bayesian Prediction

We investigate shrinkage priors for constructing Bayesian predictive distributions. It is shown that there exist shrinkage predictive distributions asymptotically dominating Bayesian predictive distributions based on the Jeffreys prior or other vague priors if the model manifold satisfies some differential geometric conditions. Kullback– Leibler divergence from the true distribution to a predic...

متن کامل

Alternative Global–Local Shrinkage Priors Using Hypergeometric–Beta Mixtures

This paper introduces an approach to estimation in possibly sparse data sets using shrinkage priors based upon the class of hypergeometric-beta distributions. These widely applicable priors turn out to be a four-parameter generalization of the beta family, and are pseudo-conjugate: they cannot themselves be expressed in closed form, but they do yield tractable moments and marginal likelihoods w...

متن کامل

Adaptive Bayesian Shrinkage Estimation Using Log-Scale Shrinkage Priors

Global-local shrinkage hierarchies are an important, recent innovation in Bayesian estimation of regression models. In this paper we propose to use log-scale distributions as a basis for generating familes of flexible prior distributions for the local shrinkage hyperparameters within such hierarchies. An important property of the log-scale priors is that by varying the scale parameter one may v...

متن کامل

Hierarchical priors for Bayesian CART shrinkage

The Bayesian CART (classiication and regression tree) approach proposed by Chipman, George and McCulloch (1998) entails putting a prior distribution on the set of all CART models and then using stochastic search to select a model. The main thrust of this paper is to propose a new class of hierarchical priors which enhance the potential of this Bayesian approach. These priors indicate a preferen...

متن کامل

Sparse Convex Clustering

Convex clustering, a convex relaxation of k-means clustering and hierarchical clustering, has drawn recent attentions since it nicely addresses the instability issue of traditional nonconvex clustering methods. Although its computational and statistical properties have been recently studied, the performance of convex clustering has not yet been investigated in the high-dimensional clustering sc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Statistics

سال: 2021

ISSN: ['0943-4062', '1613-9658']

DOI: https://doi.org/10.1007/s00180-021-01101-7