Bayesian Network Structure Learning with Permutation Tests
نویسندگان
چکیده
منابع مشابه
Learning Bayesian Network Structure using Markov Blanket in K2 Algorithm
A Bayesian network is a graphical model that represents a set of random variables and their causal relationship via a Directed Acyclic Graph (DAG). There are basically two methods used for learning Bayesian network: parameter-learning and structure-learning. One of the most effective structure-learning methods is K2 algorithm. Because the performance of the K2 algorithm depends on node...
متن کاملPermutation Testing Improves Bayesian Network Learning
We are taking a peek “under the hood” of constraint-based learning of graphical models such as Bayesian Networks. This mainstream approach to learning is founded on performing statistical tests of conditional independence. In all prior work however, the tests employed for categorical data are only asymptotically-correct, i.e., they converge to the exact p-value in the sample limit. In the prese...
متن کاملRestricted Bayesian Network Structure Learning
Learning the structure of a Bayesian network from data is a difficult problem, as its associated search space is superexponentially large. As a consequence, researchers have studied learning Bayesian networks with a fixed structure, notably naive Bayesian networks and tree-augmented Bayesian networks, which involves no search at all. There is substantial evidence in the literature that the perf...
متن کاملLearning Bayesian Network Structure Using Genetic Algorithm with Consideration of the Node Ordering via Principal Component Analysis
‎The most challenging task in dealing with Bayesian networks is learning their structure‎. ‎Two classical approaches are often used for learning Bayesian network structure;‎ ‎Constraint-Based method and Score-and-Search-Based one‎. ‎But neither the first nor the second one are completely satisfactory‎. ‎Therefore the heuristic search such as Genetic Alg...
متن کاملLearning Bayesian Network Structure using LP Relaxations
We propose to solve the combinatorial problem of finding the highest scoring Bayesian network structure from data. This structure learning problem can be viewed as an inference problem where the variables specify the choice of parents for each node in the graph. The key combinatorial difficulty arises from the global constraint that the graph structure has to be acyclic. We cast the structure l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Statistics - Theory and Methods
سال: 2012
ISSN: 0361-0926,1532-415X
DOI: 10.1080/03610926.2011.593284