Bayesian Joint Modeling Analysis of Longitudinal Proportional and Survival Data

نویسندگان

چکیده

This paper focuses on a joint model to analyze longitudinal proportional and survival data. We utilize logit transformation the data employ partially linear mixed-effect model. With this model, we estimate unknown function of time using B-splines technique. Additionally, introduce centered Dirichlet process mixture (CDPMM) capture random effects, allowing for flexible distribution. The are assumed Cox hazard sharing effects is developed two types develop Bayesian Lasso (BLasso) approach that combines Gibbs sampler Metropolis–Hastings algorithm. proposed method allows estimation parameters selection significant covariates simultaneously. evaluate performance our methods through simulation studies also provide an illustration methodologies example from MA.5 research experiment.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Sample Size Determination for Joint Modeling of Longitudinal Measurements and Survival Data

A longitudinal study refers to collection of a response variable and possibly some explanatory variables at multiple follow-up times. In many clinical studies with longitudinal measurements, the response variable, for each patient is collected as long as an event of interest, which considered as clinical end point, occurs. Joint modeling of continuous longitudinal measurements and survival time...

متن کامل

Joint modeling of longitudinal categorical data and survival data

In many biomedical studies, it is of interest to study the covariate effect on both longitudinal categorical outcomes and survival outcomes. For example, in cancer research, it is of interest to study the treatment effect on both quality of life which is a categorical outcome measured longitudinally and survival time. In this talk, we will discuss such joint models. Random effects are introduce...

متن کامل

Bayesian Methods for Joint Modeling of Longitudinal and Survival Data with Applications to Cancer Vaccine Trials

Vaccines have received a great deal of attention recently as potential therapies in cancer clinical trials. One reason for this is that they are much less toxic than chemotherapies and potentially less expensive. However, little is currently known about the biologic activity of vaccines and whether they are associated with clinical outcome. The antibody immune measures IgG and IgM have been pro...

متن کامل

Joint modeling of survival and longitudinal data: likelihood approach revisited.

The maximum likelihood approach to jointly model the survival time and its longitudinal covariates has been successful to model both processes in longitudinal studies. Random effects in the longitudinal process are often used to model the survival times through a proportional hazards model, and this invokes an EM algorithm to search for the maximum likelihood estimates (MLEs). Several intriguin...

متن کامل

Joint Modeling of Longitudinal and Cure-survival Data.

This article presents semiparametric joint models to analyze longitudinal measurements and survival data with a cure fraction. We consider a broad class of transformations for the cure-survival model, which includes the popular proportional hazards structure and the proportional odds structure as special cases. We propose to estimate all the parameters using the nonparametric maximum likelihood...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2023

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math11163469