Bayesian Inference for Logistic Regression Models using Sequential Posterior Simulation
نویسندگان
چکیده
منابع مشابه
Bayesian Inference for Logistic Regression Models using Sequential Posterior Simulation
The logistic specification has been used extensively in non-Bayesian statistics to model the dependence of discrete outcomes on the values of specified covariates. Because the likelihood function is globally weakly concave estimation by maximum likelihood is generally straightforward even in commonly arising applications with scores or hundreds of parameters. In contrast Bayesian inference has ...
متن کاملSequential Bayesian computation of logistic regression models
The Extended Kalman Filter (EKF) algorithm for identification of a state space model is shown to be a sensible tool in estimating a Logistic Regression Model sequentially. A Gaussian probability density over the parameters of the Logistic model is propagated on a sample by sample basis. Two other approaches, the Laplace Approximation and the Variational Approximation are compared with the state...
متن کاملBayesian Inference for Geostatistical Regression Models
The problem of simultaneous covariate selection and parameter inference for spatial regression models is considered. Previous research has shown that failure to take spatial correlation into account can influence the outcome of standard model selection methods. Often, these standard criteria suggest models that are too complex in an effort to compensate for spatial correlation ignored in the se...
متن کاملSemiparametric Bayesian inference for regression models
This paper presents a method for Bayesian inference for the regression parameters in a linear model with independent and identically distributed errors that does not require the specification of a parametric family of densities for the error distribution. This method first selects a nonparametric kernel density estimate of the error distribution which is unimodal and based on the least-squares ...
متن کاملBayesian Multimodel Inference for Geostatistical Regression Models
The problem of simultaneous covariate selection and parameter inference for spatial regression models is considered. Previous research has shown that failure to take spatial correlation into account can influence the outcome of standard model selection methods. A Markov chain Monte Carlo (MCMC) method is investigated for the calculation of parameter estimates and posterior model probabilities f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SSRN Electronic Journal
سال: 2013
ISSN: 1556-5068
DOI: 10.2139/ssrn.2243342