Bayesian Functional Forecasting with Locally-Autoregressive Dependent Processes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Binomial Autoregressive Processes with Density Dependent Thinning

We present an elaboration of the usual binomial AR(1) process on {0, 1, . . . , N} that allows the thinning probabilities to depend on the current state n only through the “density” n/N , a natural assumption in many real contexts. We derive some basic properties of the model and explore approaches to parameter estimation. Some special cases are considered that allow for overand underdispersion...

متن کامل

Bayesian Model Selection for Beta Autoregressive Processes

We deal with Bayesian inference for Beta autoregressive processes. We restrict our attention to the class of conditionally linear processes. These processes are particularly suitable for forecasting purposes, but are difficult to estimate due to the constraints on the parameter space. We provide a full Bayesian approach to the estimation and include the parameter restrictions in the inference p...

متن کامل

Forecasting Using Locally Stationary Wavelet Processes

Locally stationary wavelet (LSW) processes, built on non-decimated wavelets, can be used to analyze and forecast non-stationary time series. They have been proved useful in the analysis of financial data. In this paper we first carry out a sensitivity analysis, then propose some practical guidelines for choosing the wavelet bases for these processes. The existing forecasting algorithm is found ...

متن کامل

Bayesian analysis of autoregressive moving average processes with unknown orders

A Bayesian model selection for modelling a time series by an autoregressive–moving–average model (ARMA) is presented. The posterior distribution of unknown parameters and the selected orders are obtained by the Markov chain Monte Carlo (MCMC) method. An MCMC algorithm that represents the parameters of the model as a point process has been implemented. The method is illustrated on simulated seri...

متن کامل

On Recursive Estimation for Locally Stationary Time Varying Autoregressive Processes

This paper focuses on recursive estimation of locally stationary autoregressive processes. The stability of the model is revisited and uniform results are provided when the time-varying autoregression parameters belong to appropiate smoothness classes. An adequate normalization for the correction term used in the recursive estimation procedure allows for very mild assumptions on the innovations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bayesian Analysis

سال: 2019

ISSN: 1936-0975

DOI: 10.1214/18-ba1140