Bayesian Estimation of Graph Signals
نویسندگان
چکیده
We consider the problem of recovering random graph signals from nonlinear measurements. For this setting, closed-form Bayesian estimators are usually intractable and even numerical evaluation may be difficult to compute for large networks. In paper, we propose a signal processing (GSP) framework recovery that utilizes information on structure behind data. First, develop GSP-linear minimum mean-squared-error (GSP-LMMSE) estimator, which minimizes (MSE) among represented as an output filter. The GSP-LMMSE estimator is based diagonal covariance matrices in frequency domain, thus, has reduced complexity compared with LMMSE estimator. This property especially important when using sample-mean training dataset. then state conditions under low-complexity coincides optimal Next, approximate parametrization by filters. present three implementations parametric typical These filters more robust outliers network topology changes. our simulations, evaluate performance proposed estimation power systems, can interpreted task. show sample-GSP outperform sample-LMMSE limited dataset changes form adding/removing vertices/edges.
منابع مشابه
dynamic coloring of graph
در این پایان نامه رنگ آمیزی دینامیکی یک گراف را بیان و مطالعه می کنیم. یک –kرنگ آمیزی سره ی رأسی گراف g را رنگ آمیزی دینامیکی می نامند اگر در همسایه های هر رأس v?v(g) با درجه ی حداقل 2، حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k، به طوری که g دارای –kرنگ آمیزی دینامیکی باشد را عدد رنگی دینامیکی g می نامند و آنرا با نماد ?_2 (g) نمایش می دهند. مونت گمری حدس زده است که تمام گراف های منتظم ...
15 صفحه اولBayesian estimation of a class of chaotic signals
Chaotic signals are potentially atractive in a wide range of signal processing applications. This paper deals with Bayesian estimation of chaotic sequences generated by tent maps and observed in white noise. The existence of invariant distributions associated with these sequences makes the development of Bayesian estimators quite natural. Both Maximum a Posteriori (MAP) and Minimum Mean Square ...
متن کاملBayesian estimation of chaotic signals generated by piecewise-linear maps
Chaotic signals are potentially attractive in a wide range of signal processing applications. This paper deals with Bayesian estimation of chaotic sequences generated by piecewise-linear (PWL) maps and observed in white Gaussian noise. The existence of invariant distributions associated with these sequences makes the development of Bayesian estimators quite natural. Both maximum a posteriori (M...
متن کاملIncremental Sparse Bayesian Learning for Parameter Estimation of Superimposed Signals
This work discuses a novel algorithm for joint sparse estimation of superimposed signals and their parameters. The proposed method is based on two concepts: a variational Bayesian version of the incremental sparse Bayesian learning (SBL)– fast variational SBL – and a variational Bayesian approach for parameter estimation of superimposed signal models. Both schemes estimate the unknown parameter...
متن کاملApplication of Model-Based Estimation to Time-Delay Estimation of Ultrasonic Testing Signals
Time-Delay-Estimation (TDE) has been a topic of interest in many applications in the past few decades. The emphasis of this work is on the application of model-based estimation (MBE) for TDE of ultrasonic signals used in ultrasonic thickness gaging. Ultrasonic thickness gaging is based on precise measurement of the time difference between successive echoes which reflect back from the back wall ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Signal Processing
سال: 2022
ISSN: ['1053-587X', '1941-0476']
DOI: https://doi.org/10.1109/tsp.2022.3159393