Bayesian Centroid Estimation for Motif Discovery
نویسندگان
چکیده
منابع مشابه
Bayesian Centroid Estimation for Motif Discovery
Biological sequences may contain patterns that signal important biomolecular functions; a classical example is regulation of gene expression by transcription factors that bind to specific patterns in genomic promoter regions. In motif discovery we are given a set of sequences that share a common motif and aim to identify not only the motif composition, but also the binding sites in each sequenc...
متن کاملA pr 2 01 2 BAYESIAN CENTROID ESTIMATION FOR MOTIF DISCOVERY
Biological sequences may contain patterns that are signal important biomolecular functions; a classical example is regulation of gene expression by transcription factors that bind to specific patterns in genomic promoter regions. In motif discovery we are given a set of sequences that share a common motif and aim to identify not only the motif composition, but also the binding sites in each seq...
متن کاملBioOptimizer: a Bayesian scoring function approach to motif discovery
MOTIVATION Transcription factors (TFs) bind directly to short segments on the genome, often within hundreds to thousands of base pairs upstream of gene transcription start sites, to regulate gene expression. The experimental determination of TFs binding sites is expensive and time-consuming. Many motif-finding programs have been developed, but no program is clearly superior in all situations. P...
متن کاملDevelopment of an Efficient Hybrid Method for Motif Discovery in DNA Sequences
This work presents a hybrid method for motif discovery in DNA sequences. The proposed method called SPSO-Lk, borrows the concept of Chebyshev polynomials and uses the stochastic local search to improve the performance of the basic PSO algorithm as a motif finder. The Chebyshev polynomial concept encourages us to use a linear combination of previously discovered velocities beyond that proposed b...
متن کاملApproximately Recurring Motif Discovery Using Shift Density Estimation
Approximately Recurring Motif (ARM) discovery is the problem of finding unknown patterns that appear frequently in real valued timeseries. In this paper, we propose a novel algorithm for solving this problem that can achieve performance comparable with the most accurate algorithms to solve this problem with a speed comparable to the fastest ones. The main idea behind the proposed algorithm is t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLoS ONE
سال: 2013
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0080511