Band gap engineering in finite elongated graphene nanoribbon heterojunctions: Tight-binding model
نویسندگان
چکیده
منابع مشابه
Conductance of Graphene Nanoribbon Junctions and the Tight Binding Model
Planar carbon-based electronic devices, including metal/semiconductor junctions, transistors and interconnects, can now be formed from patterned sheets of graphene. Most simulations of charge transport within graphene-based electronic devices assume an energy band structure based on a nearest-neighbour tight binding analysis. In this paper, the energy band structure and conductance of graphene ...
متن کاملEnergy band-gap engineering of graphene nanoribbons.
We investigate electronic transport in lithographically patterned graphene ribbon structures where the lateral confinement of charge carriers creates an energy gap near the charge neutrality point. Individual graphene layers are contacted with metal electrodes and patterned into ribbons of varying widths and different crystallographic orientations. The temperature dependent conductance measurem...
متن کاملTight binding description on the band gap opening of pyrene-dispersed graphene.
Opening up a band gap in graphene holds a crucial significance in the realization of graphene-based electronics. Doping with organic molecules to alter the electronic properties of graphene is perceived as an effective band gap engineering approach. Using the tight binding model, we examined the band gap opening of monolayer graphene due to the adsorption of pyrene molecules on both of its side...
متن کاملScalable tight-binding model for graphene.
Artificial graphene consisting of honeycomb lattices other than the atomic layer of carbon has been shown to exhibit electronic properties similar to real graphene. Here, we reverse the argument to show that transport properties of real graphene can be captured by simulations using "theoretical artificial graphene." To prove this, we first derive a simple condition, along with its restrictions,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: AIP Advances
سال: 2015
ISSN: 2158-3226
DOI: 10.1063/1.4928450