Band-gap engineering by Bi intercalation of graphene on Ir(111)
نویسندگان
چکیده
منابع مشابه
Energy band-gap engineering of graphene nanoribbons.
We investigate electronic transport in lithographically patterned graphene ribbon structures where the lateral confinement of charge carriers creates an energy gap near the charge neutrality point. Individual graphene layers are contacted with metal electrodes and patterned into ribbons of varying widths and different crystallographic orientations. The temperature dependent conductance measurem...
متن کاملBand gap engineering of chemical vapor deposited graphene by in situ BN doping.
Band gap opening and engineering is one of the high priority goals in the development of graphene electronics. Here, we report on the opening and scaling of band gap in BN doped graphene (BNG) films grown by low-pressure chemical vapor deposition method. High resolution transmission electron microscopy is employed to resolve the graphene and h-BN domain formation in great detail. X-ray photoele...
متن کاملAligning the band gap of graphene nanoribbons by monomer doping.
Silicon-based field-effect transistors (FETs) are the building blocks of modern digital logic circuitry and therefore part of virtually every electronic device available today. Over the past decades, continuous downscaling of existing designs has met the rising performance requirements, but as the size of FETs approaches the regime of atomic structures, new concepts are required to maintain the...
متن کاملDirect graphene growth on MgO: origin of the band gap.
A 2.5 monolayer (ML) thick graphene film grown by chemical vapor deposition of thermally dissociated C(2)H(4) on MgO(111), displays a significant band gap. The apparent six-fold low energy electron diffraction (LEED) pattern actually consists of two three-fold patterns with different 'A' and 'B' site diffraction intensities. Similar effects are observed for the LEED patterns of a 1 ML carbon fi...
متن کاملTunable band gap in few-layer graphene by surface adsorption
There is a tunable band gap in ABC-stacked few-layer graphene (FLG) via applying a vertical electric field, but the operation of FLG-based field effect transistor (FET) requires two gates to create a band gap and tune channel’s conductance individually. Using first principle calculations, we propose an alternative scheme to open a band gap in ABC-stacked FLG namely via single-side adsorption. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2016
ISSN: 2469-9950,2469-9969
DOI: 10.1103/physrevb.93.165437