Balanced truncation model reduction for linear time-varying systems
نویسندگان
چکیده
منابع مشابه
Balanced Model Reduction of Linear Time-varying Systems
This paper treats model reduction of linear time-varying models in continuous time. The method proposed is based on time-varying Lyapunov inequalities and balancing of Gramians. An error bound for truncated models that generalizes the well-known ’twicethe-sum-of-the-tail’-formulafor time-invariant balanced systems is obtained. Input-output stability of truncated balanced models is also proved.
متن کاملBalanced truncation model reduction of periodic systems
The balanced truncation approach to model reduction is considered for linear discrete-time periodic systems with time-varying dimensions. Stability of the reduced model is proved and a guaranteed additive bound is derived for the approximation error. These results represent generalizations of the corresponding ones for standard discrete-time systems. Two numerically reliable methods to compute ...
متن کاملError-bounds for balanced model-reduction of linear time-varying systems
Error-bounds are developed for balanced truncation of linear time-varying systems, leading to an extension of the “twice the sum of the tail” formulas, well known in the time-invariant case. The approach relies on an operator-theoretic framework for analysis of linear time-varying systems. This provides a multivariable notion of frequency for such systems, which are thus characterized by ration...
متن کاملOn Model Reduction for Periodic Descriptor Systems Using Balanced Truncation
Linear periodic descriptor systems represent a broad class of time evolutionary processes in micro-electronics and circuit simulation in particular. In this paper we consider discrete-time linear periodic descriptor systems and study the concepts of periodic reachability and observability of the systems based on earlier ideas of Chu et al. [1]. We define reachability and observability Gramians ...
متن کاملParallel Algorithms for Balanced Truncation Model Reduction of Sparse Systems
We describe the parallelization of an efficient algorithm for balanced truncation that allows to reduce models with state-space dimension up to O(10). The major computational task in this approach is the solution of two large-scale sparse Lyapunov equations, performed via a coupled LR-ADI iteration with (super-)linear convergence. Experimental results on a cluster of Intel Xeon processors illus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical and Computer Modelling of Dynamical Systems
سال: 2016
ISSN: 1387-3954,1744-5051
DOI: 10.1080/13873954.2016.1198386