Balanced shellings and moves on balanced manifolds

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simplicial Moves on Balanced Complexes

We introduce a notion of cross-flips: local moves that transform a balanced (i.e., properly (d + 1)-colored) triangulation of a combinatorial d-manifold into another balanced triangulation. These moves form a natural analog of bistellar flips (also known as Pachner moves). Specifically, we establish the following theorem: any two balanced triangulations of a closed combinatorial d-manifold can ...

متن کامل

Analytic fields on compact balanced Hermitian manifolds

On a Hermitian manifold we construct a symmetric (1, 1)tensor H using the torsion and the curvature of the Chern connection. On a compact balanced Hermitian manifold we find necessary and sufficient conditions in terms of the tensor H for a harmonic 1-form to be analytic and for an analytic 1form to be harmonic. We prove that if H is positive definite then the first Betti number b1 = 0 and the ...

متن کامل

Remarks on Distance-Balanced Graphs

Distance-balanced graphs are introduced as graphs in which every edge uv has the following property: the number of vertices closer to u than to v is equal to the number of vertices closer to v than to u. Basic properties of these graphs are obtained. In this paper, we study the conditions under which some graph operations produce a distance-balanced graph.

متن کامل

Balanced HKT metrics and strong HKT metrics on hypercomplex manifolds

A manifold (M, I, J,K) is called hypercomplex if I, J,K are complex structures satisfying quaternionic relations. A quaternionic Hermitian hypercomplex manifold is called HKT (hyperkähler with torsion) if the (2,0)-form Ω associated with the corresponding Sp(n)-structure satisfies ∂Ω = 0. A Hermitian metric ω on a complex manifold is called balanced if d∗ω = 0. We show that balanced HKT metrics...

متن کامل

Balanced realizations near stable invariant manifolds

It is shown that the notion of balancing a state space realization about a stable, isolated equilibrium point can be generalized to systems possessing only a stable invariant regular submanifold of arbitrary dimension, for example, a stable limit cycle.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2021

ISSN: 0001-8708

DOI: 10.1016/j.aim.2021.107571