Balanced 0, ±1 Matrices II. Recognition Algorithm

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Balanced 0, ±1 Matrices Part II. Recognition Algorithm

In this paper we give a polynomial time recognition algorithm for balanced 0; 1 matrices. This algorithm is based on a decomposition theorem proved in a companion paper.

متن کامل

A polynomial recognition algorithm for balanced matrices

A 0,±1 matrix is balanced if it does not contain a square submatrix with two nonzero elements per row and column in which the sum of all entries is 2 modulo 4. Conforti, Cornuéjols and Rao [9], and Conforti, Cornuéjols, Kapoor and Vušković [6], provided a polynomial algorithm to test balancedness of a matrix. In this paper we present a simpler polynomial algorithm, based on techniques introduce...

متن کامل

Balanced 0-1 Matrices I. Decomposition

A 0, \1 matrix is balanced if, in every square submatrix with two nonzero entries per row and column, the sum of the entries is a multiple of four. This paper extends the decomposition of balanced 0, 1 matrices obtained by Conforti, Cornue jols, and Rao (1999, J. Combin. Theory Ser. B 77, 292 406) to the class of balanced 0, \1 matrices. As a consequence, we obtain a polynomial time algorithm f...

متن کامل

Balanced 0, ±1 Matrices Part I. Decomposition

A 0; 1 matrix is balanced if, in every square submatrix with two nonzero entries per row and column, the sum of the entries is a multiple of four. This paper extends the decomposition of balanced 0; 1 matrices obtained by Conforti, Cornu ejols and Rao to the class of balanced 0; 1 matrices. As a consequence, we obtain a polynomial time algorithm for recognizing balanced 0; 1 matrices.

متن کامل

(0, ±1) Ideal Matrices

A (0; 1) matrix A is said to be ideal if all the vertices of the polytope Q(A) = fx : Ax 1; 0 x 1g are integral. The issue of nding a satisfactory characterization of those matrices which are minimally non-ideal is a well known open problem. An outstanding result toward the solution of this problem, due to Alfred Lehman, is the description of crucial properties of minimally non-ideal matrices. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series B

سال: 2001

ISSN: 0095-8956

DOI: 10.1006/jctb.2000.2011