Baer submodules of modules over commutative rings
نویسندگان
چکیده
Let $R$ be a commutative ring and $M$ an $R$-module. A submodule $N$ of is called d-submodule $($resp., fd-submodule$)$ if $\ann_R(m)\subseteq \ann_R(m')$ $\ann_R(F)\subseteq \ann_R(m'))$ for some $m\in N$ finite subset $F\subseteq N)$ $m'\in M$ implies that N.$ Many examples, characterizations, properties these submodules are given. Moreover, we use them to characterize modules satisfying Property T, reduced modules, von Neumann regular modules.
منابع مشابه
On 2-absorbing Primary Submodules of Modules over Commutative Rings
All rings are commutative with 1 6= 0, and all modules are unital. The purpose of this paper is to investigate the concept of 2-absorbing primary submodules generalizing 2-absorbing primary ideals of rings. Let M be an R-module. A proper submodule N of an R-module M is called a 2-absorbing primary submodule of M if whenever a, b ∈ R and m ∈M and abm ∈ N , then am ∈M -rad(N) or bm ∈M -rad(N) or ...
متن کاملAssociated Graphs of Modules Over Commutative Rings
Let $R$ be a commutative ring with identity and let $M$ be an $R$-module. In this paper we introduce a new graph associated to modules over commutative rings. We study the relationship between the algebraic properties of modules and their associated graphs. A topological characterization for the completeness of the special subgraphs is presented. Also modules whose associated graph is complete...
متن کاملThe generalized total graph of modules respect to proper submodules over commutative rings.
Let $M$ be a module over a commutative ring $R$ and let $N$ be a proper submodule of $M$. The total graph of $M$ over $R$ with respect to $N$, denoted by $T(Gamma_{N}(M))$, have been introduced and studied in [2]. In this paper, A generalization of the total graph $T(Gamma_{N}(M))$, denoted by $T(Gamma_{N,I}(M))$ is presented, where $I$ is an ideal of $R$. It is the graph with all elements of $...
متن کاملNONNIL-NOETHERIAN MODULES OVER COMMUTATIVE RINGS
In this paper we introduce a new class of modules which is closely related to the class of Noetherian modules. Let $R$ be a commutative ring with identity and let $M$ be an $R$-module such that $Nil(M)$ is a divided prime submodule of $M$. $M$ is called a Nonnil-Noetherian $R$-module if every nonnil submodule of $M$ is finitely generated. We prove that many of the properties of Noetherian modul...
متن کاملJónsson Modules over Commutative Rings
Let M be an infinite unitary module over a commutative ring R with identity. Then M is called a Jónsson module provided every proper submodule of M has smaller cardinality than M. These modules have been studied by several algebraists, including Robert Gilmer, Bill Heinzer, and the author. In this note, we recall the major results on Jónsson modules to bring the reader up to speed on current re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Electronic Journal of Algebra
سال: 2023
ISSN: ['1306-6048']
DOI: https://doi.org/10.24330/ieja.1252741