Bacterial Persister Cell Formation and Dormancy
نویسندگان
چکیده
منابع مشابه
Bacterial persister cell formation and dormancy.
Bacterial cells may escape the effects of antibiotics without undergoing genetic change; these cells are known as persisters. Unlike resistant cells that grow in the presence of antibiotics, persister cells do not grow in the presence of antibiotics. These persister cells are a small fraction of exponentially growing cells (due to carryover from the inoculum) but become a significant fraction i...
متن کاملSignaling-Mediated Bacterial Persister Formation
Here we show that bacterial communication through indole signaling induces persistence, a phenomenon in which a subset of an isogenic bacterial population tolerates antibiotic treatment. We monitor indole-induced persister formation using microfluidics and identify the role of oxidative-stress and phage-shock pathways in this phenomenon. We propose a model in which indole signaling 'inoculates'...
متن کاملEffects of persister formation on bacterial response to dosing.
Almost all moist surfaces are colonized by microbial biofilms. Biofilms are implicated in cross-contamination of food products, biofouling and various human infections such as dental cavities, ulcerative colitis and chronic respiratory infections. The recalcitrance of biofilms to typical antibiotic and antimicrobial treatments is one focus of current investigations. Neither reaction-diffusion l...
متن کاملCombatting bacterial persister cells.
Most bacterial cells lead lives of quiet desperation in biofilms, combatting stress; yet, their prevalence attests to their ability to alter gene regulation to cope with myriad insults. Since biofilm bacteria are faced with starvation and other environmental stress (e.g., antibiotics from competitors, oxidative stress from host immune systems), it behooves them to be able to ramp down their met...
متن کاملToxin YafQ increases persister cell formation by reducing indole signalling.
Persister cells survive antibiotic and other environmental stresses by slowing metabolism. Since toxins of toxin/antitoxin (TA) systems have been postulated to be responsible for persister cell formation, we investigated the influence of toxin YafQ of the YafQ/DinJ Escherichia coli TA system on persister cell formation. Under stress, YafQ alters metabolism by cleaving transcripts with in-frame ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied and Environmental Microbiology
سال: 2013
ISSN: 0099-2240,1098-5336
DOI: 10.1128/aem.02636-13