Backward problems in time for fractional diffusion-wave equation
نویسندگان
چکیده
منابع مشابه
Solutions to Time-Fractional Diffusion-Wave Equation in Cylindrical Coordinates
Nonaxisymmetric solutions to time-fractional diffusion-wave equation with a source term in cylindrical coordinates are obtained for an infinite medium. The solutions are found using the Laplace transform with respect to time t, the Hankel transform with respect to the radial coordinate r, the finite Fourier transform with respect to the angular coordinate φ, and the exponential Fourier transfor...
متن کاملApproximation of Fractional Diffusion-wave Equation
In this paper we consider the solution of the fractional differential equations. In particular, we consider the numerical solution of the fractional one dimensional diffusion-wave equation. Some improvements of computational algorithms are suggested. The considerations have been illustrated by examples.
متن کاملFinite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients
In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...
متن کاملAn Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation
Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Inverse Problems
سال: 2020
ISSN: 0266-5611,1361-6420
DOI: 10.1088/1361-6420/abbc5e