Backward Error Analysis of Polynomial Eigenvalue Problems Solved by Linearization
نویسندگان
چکیده
منابع مشابه
Backward Error Analysis of Polynomial Eigenvalue Problems Solved by Linearization
One of the most frequently used techniques to solve polynomial eigenvalue problems is linearization, in which the polynomial eigenvalue problem is turned into an equivalent linear eigenvalue problem with the same eigenvalues, and with easily recoverable eigenvectors. The eigenvalues and eigenvectors of the linearization are usually computed using a backward stable solver such as the QZ algorith...
متن کاملBackward Error of Polynomial Eigenvalue Problems Solved by Linearization of Lagrange Interpolants
This article considers the backward error of the solution of polynomial eigenvalue problems expressed as Lagrange interpolants. One of the most common strategies to solve polynomial eigenvalue problems is to linearize, which is to say that the polynomial eigenvalue problem is transformed into an equivalent larger linear eigenvalue problem, and solved using any appropriate eigensolver. Much of t...
متن کاملBackward Error of Polynomial Eigenproblems Solved by Linearization
The most widely used approach for solving the polynomial eigenvalue problem P (λ)x = (∑m i=0 λ Ai ) x = 0 in n × n matrices Ai is to linearize to produce a larger order pencil L(λ) = λX + Y , whose eigensystem is then found by any method for generalized eigenproblems. For a given polynomial P , infinitely many linearizations L exist and approximate eigenpairs of P computed via linearization can...
متن کاملStructured Backward Error Analysis of Linearized Structured Polynomial Eigenvalue Problems
We start by introducing a new class of structured matrix polynomials, namely, the class of MA-structured matrix polynomials, to provide a common framework for many classes of structured matrix polynomials that are important in applications: the classes of (skew-)symmetric, (anti-)palindromic, and alternating matrix polynomials. Then, we introduce the families of MAstructured strong block minima...
متن کاملStructured backward error for palindromic polynomial eigenvalue problems
A detailed structured backward error analysis for four kinds of Palindromic Polynomial Eigenvalue Problems (PPEP) ( d ∑ l=0 Alλ l ) x = 0, Ad−l = εA ⋆ l for l = 0, 1, . . . , ⌊d/2⌋, where ⋆ is one of the two actions: transpose and conjugate transpose, and ε ∈ {±1}. Each of them has its application background with the case ⋆ taking transpose and ε = 1 attracting a great deal of attention lately ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications
سال: 2016
ISSN: 0895-4798,1095-7162
DOI: 10.1137/15m1015777