AXS: A Framework for Fast Astronomical Data Processing Based on Apache Spark
نویسندگان
چکیده
منابع مشابه
A comparison on scalability for batch big data processing on Apache Spark and Apache Flink
*Correspondence: [email protected] 1Department of Computer Science and Artificial Intelligence, CITIC-UGR (Research Center on Information and Communications Technology), University of Granada, Calle Periodista Daniel Saucedo Aranda, 18071 Granada, Spain Full list of author information is available at the end of the article Abstract The large amounts of data have created a need for new fram...
متن کاملTowards Large Scale Environmental Data Processing with Apache Spark
Currently available environmental datasets are either manually constructed by professionals or automatically generated from the observations provided by sensing devices. Usually, the former are modelled and recorded with traditional general-purpose relational technologies, whereas the latter require more specific scientific array formats and tools. Declarative data processing technologies are a...
متن کاملSPARQL query processing with Apache Spark
The number and the size of linked open data graphs keep growing at a fast pace and confronts semantic RDF services with problems characterized as Big data. Distributed query processing is one of them and needs to be efficiently addressed with execution guaranteeing scalability, high availability and fault tolerance. RDF data management systems requiring these properties are rarely built from sc...
متن کاملAn Apache Spark Implementation for Sentiment Analysis on Twitter Data
Sentiment Analysis on Twitter Data is a challenging problem due to the nature, diversity and volume of the data. In this work, we implement a system on Apache Spark, an open-source framework for programming with Big Data. The sentiment analysis tool is based on Machine Learning methodologies alongside with Natural Language Processing techniques and utilizes Apache Spark’s Machine learning libra...
متن کاملOpenCluster: A Flexible Distributed Computing Framework for Astronomical Data Processing
The volume of data generated by modern astronomical telescopes is extremely large and rapidly growing. However, current high-performance data processing architectures/frameworks are not well suited for astronomers because of their limitations and programming difficulties. In this paper, we therefore present OpenCluster, an open-source distributed computing framework to support rapidly developin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Astronomical Journal
سال: 2019
ISSN: 1538-3881
DOI: 10.3847/1538-3881/ab2384