AVERAGE-OPTIMAL ADAPTIVE POLICIES IN SEMI-MARKOV DECISION PROCESSES INCLUDING AN UNKNOWN PARAMETER
نویسندگان
چکیده
منابع مشابه
Semi-markov Decision including an Unknown
SEMI-MARKOV DECISION INCLUDING AN UNKNOWN Masami Kurano Chiba University PROCESSES PARAMETER (Received February 27, 1984: Revised May 8,1985) We consider the problem of minimizing the long-run average (expected) cost per unit time in a semiMarkov decision process including an unknown parameter. In the case of general state and action spaces and compact parameter space we construct the adaptive ...
متن کاملl AVERAGE COST SEMI - MARKOV DECISION PROCESSES
^ The Semi-Markov Decision model is considered under the criterion of long-run average cost. A new criterion, which for any policy considers the limit of the expected cost Incurred during the first n transitions divided by the expected length of the first n transitions, is considered. Conditions guaranteeing that an optimal stationary (nonrandomized) policy exist are then presented. It is also ...
متن کاملBounded Parameter Markov Decision Processes Bounded Parameter Markov Decision Processes
In this paper, we introduce the notion of a bounded parameter Markov decision process as a generalization of the traditional exact MDP. A bounded parameter MDP is a set of exact MDPs speciied by giving upper and lower bounds on transition probabilities and rewards (all the MDPs in the set share the same state and action space). Bounded parameter MDPs can be used to represent variation or uncert...
متن کاملBounded Parameter Markov Decision Processes with Average Reward Criterion
Bounded parameter Markov Decision Processes (BMDPs) address the issue of dealing with uncertainty in the parameters of a Markov Decision Process (MDP). Unlike the case of an MDP, the notion of an optimal policy for a BMDP is not entirely straightforward. We consider two notions of optimality based on optimistic and pessimistic criteria. These have been analyzed for discounted BMDPs. Here we pro...
متن کاملSemi-markov Decision Processes
Considered are infinite horizon semi-Markov decision processes (SMDPs) with finite state and action spaces. Total expected discounted reward and long-run average expected reward optimality criteria are reviewed. Solution methodology for each criterion is given, constraints and variance sensitivity are also discussed.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Operations Research Society of Japan
سال: 1985
ISSN: 0453-4514,2188-8299
DOI: 10.15807/jorsj.28.252