Average independence polynomials

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Average independence polynomials

The independence polynomial of a graph G is the function i(G, x) = ∑k 0 ikx , where ik is the number of independent sets of vertices in G of cardinality k. We investigate here the average independence polynomial, where the average is taken over all independence polynomials of (labeled) graphs of order n. We prove that while almost every independence polynomial has a nonreal root, the average in...

متن کامل

Average Distance and Independence Number

A sharp upper bound on the average distance of a graph depending on the order and the independence number is given. As a corollary we obtain the maximum average distance of a graph with given order and matching number. All extremal graphs are determined.

متن کامل

On Symmetry of Independence Polynomials

An independent set in a graph is a set of pairwise non-adjacent vertices, and α(G) is the size of a maximum independent set in the graph G. A matching is a set of non-incident edges, while μ(G) is the cardinality of a maximum matching. If sk is the number of independent sets of cardinality k in G, then I(G;x) = s0 + s1x+ s2x 2 + ...+ sαx , α = α (G) , is called the independence polynomial of G ...

متن کامل

Independence, odd girth, and average degree

We prove several best-possible lower bounds in terms of the order and the average degree for the independence number of graphs which are connected and/or satisfy some odd girth condition. Our main result is the extension of a lower bound for the independence number of triangle-free graphs of maximum degree at most 3 due to Heckman and Thomas [A New Proof of the Independence Ratio of Triangle-Fr...

متن کامل

Graph products with log-concave independence polynomials

A stable set in a graph G is a set of pairwise non-adjacent vertices. The independence polynomial of G is I(G;x) = s0+s1x+s2x 2 +...+sαx α , where α = α(G) is the cardinality of a maximum stable of G, while sk equals the number of stable sets of size k in G (Gutman and Harary, 1983). Hamidoune, 1990, showed that for every claw-free graph G (i.e., a graph having no induced subgraph isomorphic to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series B

سال: 2005

ISSN: 0095-8956

DOI: 10.1016/j.jctb.2004.10.001