Automorphisms and Inner Automorphisms

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotically Unitary Equivalence and Asymptotically Inner Automorphisms

Let C be a unital AH-algebra and let A be a unital separable simple C∗-algebra with tracial rank zero. Suppose that φ1, φ2 : C → A are two unital monomorphisms. We show that there is a continuous path of unitaries {ut : t ∈ [0,∞)} of A such that lim t→∞ u∗tφ1(a)ut = φ2(a) for all a ∈ C if and only if [φ1] = [φ2] in KK(C,A), τ ◦ φ1 = τ ◦ φ2 for all τ ∈ T (A) and the rotation map η̃φ1,φ2 associate...

متن کامل

Locally Inner Automorphisms of Operator Algebras

In this paper an automorphism of a unital C-algebra is said to be locally inner if on any element it agrees with some inner automorphism. We make a fairly complete study of local innerness in von Neumann algebras, incorporating comparison with the pointwise innerness of Haagerup-Størmer. On some von Neumann algebras, including all with separable predual, a locally inner automorphism must be inn...

متن کامل

Inner Automorphisms of Right-angled Coxeter Groups

If W is a right-angled Coxeter group, then the group Aut(W ) of automorphisms of W acts on the set of conjugacy classes of involutions in W. Following Tits [16], the kernel of this action is denoted by Aut◦(W ). Since W is a CAT(0) group [12], the index of Aut◦(W ) in Aut(W ) is finite and there is a series 1 Inn(W ) Aut◦(W ) Aut(W ) of normal subgroups of Aut(W ). A presentation for Aut◦(W ) w...

متن کامل

n-INNER AUTOMORPHISMS OF FINITE GROUPS

We refer to an automorphism g of a group G as n-inner if given any subset S of G with cardinality less than n, there exists an inner automorphism of G agreeing with g on S. Hence g is 2-inner if it sends every element of G to a conjugate. New examples are given of outer n-inner automorphisms of finite groups for all natural numbers n ≥ 2.

متن کامل

All Automorphisms of the Calkin Algebra Are Inner

We prove that it is relatively consistent with the usual axioms of mathematics that all automorphisms of the Calkin algebra are inner. Together with a 2006 Phillips–Weaver construction of an outer automorphism using the Continuum Hypothesis, this gives a complete solution to a 1977 problem of Brown–Douglas–Fillmore. We also give a simpler and self-contained proof of the Phillips–Weaver result. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematics

سال: 2016

ISSN: 2314-4629,2314-4785

DOI: 10.1155/2016/3983895