Automorphic ℒ‐invariants for reductive groups

نویسندگان

چکیده

Let $G$ be a reductive group over number field $F$, which is split at finite place $\mathfrak{p}$ of and let $\pi$ cuspidal automorphic representation $G$, cohomological with respect to the trivial coefficient system Steinberg $\mathfrak{p}$. We use cohomology $\mathfrak{p}$-arithmetic subgroups attach $\mathcal{L}$-invariants $\pi$. This generalizes construction Darmon (respectively Spie\ss), who considered case $G=GL_2$ rationals totally real field). These depend priori on choice degree cohomology, in occurs. show that they are independent this provided $\pi$-isotypical part cyclic Venkatesh's derived Hecke algebra. Further, we can detected by completed cohomology. Combined local-global compatibility result Ding it follows for certain representations definite unitary groups equal Fontaine-Mazur associated Galois representation.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automorphic Forms and Metaplectic Groups

In 1952, Gelfand and Fomin noticed that classical modular forms were related to representations of SL2(R). As a result of this realization, Gelfand later defined GLr automorphic forms via representation theory. A metaplectic form is just an automorphic form defined on a cover of GLr, called a metaplectic group. In this talk, we will carefully construct the metaplectic covers of GL2(F) where F i...

متن کامل

Automorphic orbits in free groups

Let Fn be the free group of a finite rank n. We study orbits Orbφ(u), where u is an element of the group Fn, under the action of an automorphism φ. If an orbit like that is finite, we determine precisely what its cardinality can be if u runs through the whole group Fn, and φ runs through the whole group Aut(Fn). Another problem that we address here is related to Whitehead’s algorithm that deter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Crelle's Journal

سال: 2021

ISSN: ['1435-5345', '0075-4102']

DOI: https://doi.org/10.1515/crelle-2021-0029