Automation of Crop Disease Detection through Conventional Machine Learning and Deep Transfer Learning Approaches
نویسندگان
چکیده
With the rapid population growth, increasing agricultural productivity is an extreme requirement to meet demands. Early identification of crop diseases essential prevent yield loss. Nevertheless, it a tedious task manually monitor leaf diseases, as demands in-depth knowledge plant pathogens well lot work, and excessive processing time. For these purposes, various methods based on image processing, deep learning, machine learning are developed examined by researchers for disease often have obtained significant results. Motivated this existing we conducted extensive comparative study between traditional (SVM, LDA, KNN, CART, RF, NB) transfer (VGG16, VGG19, InceptionV3, ResNet50, CNN) models in terms precision, accuracy, f1-score, recall dataset taken from PlantVillage Dataset composed diseased healthy leaves binary classification. Moreover, applied several activation functions optimizers further enhance CNN architectures’ performance. The classification accuracy (CA) that experimentation quite impressive all models. Our findings reveal NB gives least CA at 60.09%, while InceptionV3 model yields best CA, reaching 98.01%.
منابع مشابه
the effect of vocabulary instruction through semantic mapping on learning and recall of efl learners
چکیده ندارد.
15 صفحه اولHybrid Heterogeneous Transfer Learning through Deep Learning
Most previous heterogeneous transfer learning methods learn a cross-domain feature mapping between heterogeneous feature spaces based on a few cross-domain instance-correspondences, and these corresponding instances are assumed to be representative in the source and target domains respectively. However, in many realworld scenarios, this assumption may not hold. As a result, the constructed feat...
متن کاملSimulated Transfer Learning Through Deep Reinforcement Learning
This paper encapsulates the use reinforcement learning on raw images provided by a simulation to produce a partially trained network. Before training is continued, this partially trained network is fed different raw images that are more tightly coupled with a richer representation of the non-simulated environment. The use of transfer learning allows for the model to adjust to this richer repres...
متن کاملMelanoma detection with a deep learning model
Background: Skin cancer is one of the most common forms of cancer in the world and melanoma is the deadliest type of skin cancer. Both melanoma and melanocytic nevi begin in melanocytes (cells that produce melanin). However, melanocytic nevi are benign whereas melanoma is malignant. This work proposes a deep learning model for classification of these two lesions. Methods: In this analytic s...
متن کاملintentional and incidental vocabulary learning through listening comprehension
یکی از مسایل مهم در یادگیری زبان ، یادگیری لغت است. هدف این تحقیق ، بررسی یاد گیری شیوه های مستقیم و غیر مستقیم فراگیری لغت درفرایند شنیداری زبان است و اینکه کدامیک از آنها برای بهبود و تسهیل یادگیری واژگان زبان آموزان سطح متوسطه موثرترند.این تحقیق تفاوت بین تاثیر فراگیری مستقیم و غیر مستقیم لغت در فرایند شنیداری زبان در کوتاه مدت را بررسی می کند ، سپس تفاوت بین تاثیر یادگیری مستقیم و غیر مستقی...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Agriculture
سال: 2023
ISSN: ['2077-0472']
DOI: https://doi.org/10.3390/agriculture13020352