Automatic Tolerance Selection for Approximate Bayesian Computation
نویسندگان
چکیده
منابع مشابه
“ Constructing summary statistics for approximate Bayesian computation : semi - automatic approximate Bayesian computation ”
This report is a collection of comments on the Read Paper of Fearnhead and Prangle (2011), to appear in the Journal of the Royal Statistical Society Series B, along with a reply from the authors. 1 A universal latent variable representation (C. Andrieu, A. Doucet and A. Lee) Exact simulation to tackle intractability in model based statistical inference has been exploited in recent years for the...
متن کاملAutomatic Kernel Selection for Gaussian Processes Regression with Approximate Bayesian Computation and Sequential Monte Carlo
The current work introduces a novel combination of two Bayesian tools, Gaussian Processes (GPs), and the use of the Approximate Bayesian Computation (ABC) algorithm for kernel selection and parameter estimation for machine learning applications. The combined methodology that this research article proposes and investigates offers the possibility to use different metrics and summary statistics of...
متن کاملDeviance Information Criteria for Model Selection in Approximate Bayesian Computation
Approximate Bayesian computation (ABC) is a class of algorithmic methods in Bayesian inference using statistical summaries and computer simulations. ABC has become popular in evolutionary genetics and in other branches of biology. However model selection under ABC algorithms has been a subject of intense debate during the recent years. Here we propose novel approaches to model selection based o...
متن کاملApproximate Bayesian Computation for Smoothing
We consider a method for approximate inference in hidden Markov models (HMMs). The method circumvents the need to evaluate conditional densities of observations given the hidden states. It may be considered an instance of Approximate Bayesian Computation (ABC) and it involves the introduction of auxiliary variables valued in the same space as the observations. The quality of the approximation m...
متن کاملAutomatic Sampler Discovery via Probabilistic Programming and Approximate Bayesian Computation
We describe an approach to automatic discovery of samplers in the form of human interpretable probabilistic programs. Specifically, we learn the procedure code of samplers for one-dimensional distributions. We formulate a Bayesian approach to this problem by specifying an adaptor grammar prior over probabilistic program code, and use approximate Bayesian computation to learn a program whose exe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Social Science Research Network
سال: 2021
ISSN: ['1556-5068']
DOI: https://doi.org/10.2139/ssrn.3888727