Automatic Fourier transform and self-Fourier beams due to parabolic potential
نویسندگان
چکیده
منابع مشابه
Finite Fourier Transform, Circulant Matrices, and the Fast Fourier Transform
Suppose we have a function s(t) that measures the sound level at time t of an analog audio signal. We assume that s(t) is piecewise-continuous and of finite duration: s(t) = 0 when t is outside some interval a ≤ t ≤ b. Make a change of variable x = (t− a)/(b− a) and set f(x) = s(t). Then 0 ≤ x ≤ 1 when a ≤ t ≤ b, and f(x) is a piecewise continuous function of x. We convert f(x) into a digital s...
متن کاملFourier Transform Infrared and Fourier Transform Raman Spectroscopy of Polymers
This chapter covers the fundamental principles and current applications of Fourier transform (FT) infrared and Fourier transform Raman spectroscopies as utilized in the analysis of polymeric materials. The primary emphasis of the first part is on the principles and advantages of these interferometric methods, whereas the remaining sections illustrate numerous applications focusing on the struct...
متن کاملFourier Transform
Very broadly speaking, the Fourier transform is a systematic way to decompose “generic” functions into a superposition of “symmetric” functions. These symmetric functions are usually quite explicit (such as a trigonometric function sin(nx) or cos(nx)), and are often associated with physical concepts such as frequency or energy. What “symmetric” means here will be left vague, but it will usually...
متن کاملFractional-Fourier-transform calculation through the fast-Fourier-transform algorithm.
A method for the calculation of the fractional Fourier transform (FRT) by means of the fast Fourier transform (FFT) algorithm is presented. The process involves mainly two FFT's in cascade; thus the process has the same complexity as this algorithm. The method is valid for fractional orders varying from -1 to 1. Scaling factors for the FRT and Fresnel diffraction when calculated through the FFT...
متن کاملDistributions and Fourier Transform
Introduction. The theory of distributions, or generalized functions, provides a unified framework for performing standard calculus operations on nonsmooth functions, measures (such as the Dirac delta function), and even more general measure-like objects in the same way as they are done for smooth functions. In this theory, any distribution can be differentiated arbitrarily many times, a large c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Physics
سال: 2015
ISSN: 0003-4916
DOI: 10.1016/j.aop.2015.10.006