Automatic continuity for groups whose torsion subgroups are small

نویسندگان

چکیده

Abstract We prove that a group homomorphism ? : L ? G \varphi\colon L\to G from locally compact Hausdorff ???? into discrete ???? either is continuous, or there exists normal open subgroup N ? N\subseteq L such ? ( stretchy="false">) \varphi(N) torsion provided does not include ? the ????-adic integers Z p \mathbb{Z}_{p} Prüfer ????-group mathvariant="normal">? \mathbb{Z}(p^{\infty}) for any prime ???? as subgroup, and if subgroups of are small in sense artinian. In particular, ???? surjective additionally have non-trivial subgroups, then continuous. As an application, we obtain results concerning continuity homomorphisms groups to many geometric theory, particular automorphism right-angled Artin Helly groups.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

finite groups whose minimal subgroups are weakly h*-subgroups

let $g$ be a finite group‎. ‎a subgroup‎ ‎$h$ of $g$ is called an $mathcal h $ -subgroup in‎ ‎$g$ if $n_g (h)cap h^gleq h$ for all $gin‎ ‎g$. a subgroup $h$ of $g$ is called a weakly‎ $mathcal h^ast $-subgroup in $g$ if there exists a‎ ‎subgroup $k$ of $g$ such that $g=hk$ and $hcap‎ ‎k$ is an $mathcal h$-subgroup in $g$. we‎ ‎investigate the structure of the finite group $g$ under the‎ ‎assump...

متن کامل

Finite Groups Whose «-maximal Subgroups Are Subnormal

Introduction. Dedekind has determined all groups whose subgroups are all normal (see, e.g., [5, Theorem 12.5.4]). Partially generalizing this, Wielandt showed that a finite group is nilpotent, if and only if all its subgroups are subnormal, and also if and only if all maximal subgroups are normal [5, Corollary 10.3.1, 10.3.4]. Huppert [7, Sätze 23, 24] has shown that if all 2nd-maximal subgroup...

متن کامل

Classification of finite simple groups whose Sylow 3-subgroups are of order 9

In this paper, without using the classification of finite simple groups, we determine the structure of  finite simple groups whose Sylow 3-subgroups are of the order 9. More precisely, we classify finite simple groups whose Sylow 3-subgroups are elementary abelian of order 9.

متن کامل

on soluble groups whose subnormal subgroups are inert

a subgroup h of a group g is called inert if‎, ‎for each $gin g$‎, ‎the index of $hcap h^g$ in $h$ is finite‎. ‎we give a classification ‎of soluble-by-finite groups $g$ in which subnormal subgroups are inert in the cases where $g$ has no nontrivial torsion normal subgroups or $g$‎ ‎is finitely generated‎.

متن کامل

on fitting groups whose proper subgroups are solvable

this work is a continuation of [a‎. ‎o‎. ‎asar‎, ‎‎‎on infinitely generated groups whose proper subgroups are solvable‎, ‎{em j‎. ‎algebra}‎, ‎{bf 399} (2014) 870-886.]‎, ‎where it was shown‎ ‎that a perfect infinitely generated group whose proper subgroups‎ are solvable and in whose homomorphic images normal closures of ‎finitely generated subgroups are residually nilpotent is a fitting‎‎$p$-g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Group Theory

سال: 2022

ISSN: ['1435-4446', '1433-5883']

DOI: https://doi.org/10.1515/jgth-2021-0105