Automated activity recognition of construction workers using single in-pocket smartphone and machine learning methods

نویسندگان

چکیده

Abstract Automatic recognition of construction workers’ activities contributes to improving productivity and reducing the potential risk injury. Kinematics sensors have been proved feasible efficient recognize activities. However, most need be tightly tied bodies, which might result in uncomfortableness reluctance wear sensors. To solve problem, this paper proposes a less physically intrusive method with single in-pocket smartphone. The smartphone was placed pocket natural non-fixed manner, its built-in accelerometer gyroscope collecting motion data. Machine learning-based classifiers were trained An experiment simulating rebar designed verify effectiveness proposed method. results showed that could identify (with an accuracy over 94%) non-intrusive manner.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smartphone-based construction workers' activity recognition and classification

Article history: Received 3 October 2015 Received in revised form 24 July 2016 Accepted 13 August 2016 Available online 21 August 2016 Understanding the state, behavior, and surrounding context of construction workers is essential to effective project management and control. Exploiting the integrated sensors of ubiquitous mobile phones offers an unprecedented opportunity for an automated approa...

متن کامل

Activity Recognition by Smartphone Accelerometer Data Using Ensemble Learning Methods

As smartphones are equipped with various sensors, there have been many studies focused on using these sensors to create valuable applications. Human activity recognition is one such application motivated by various welfare applications, such as the support for the elderly, measurement of calorie consumption, lifestyle and exercise patterns analyses, and so on. One of the challenges one faces wh...

متن کامل

investigation of single-user and multi-user detection methods in mc-cdma systems and comparison of their performances

در این پایان نامه به بررسی روش های آشکارسازی در سیستم های mc-cdma می پردازیم. با توجه به ماهیت آشکارسازی در این سیستم ها، تکنیک های آشکارسازی را می توان به دو دسته ی اصلی تقسیم نمود: آشکارسازی سیگنال ارسالی یک کاربر مطلوب بدون در نظر گرفتن اطلاعاتی در مورد سایر کاربران تداخل کننده که از آن ها به عنوان آشکارساز های تک کاربره یاد می شود و همچنین آشکارسازی سیگنال ارسالی همه ی کاربران فعال موجود در...

Human Activity Recognition by Smartphone using Machine Learning Algorithm for Remote Monitoring

Human Activity Recognition has a lot of applications such as patient monitoring, rehabilitation and assisting disabled. When mobile sensors are hold to the subject’s body, they permit continuous monitoring of numerous signals patterns from the phone. This has appealing use in healthcare applications. In order to improve the state of global healthcare, numeroushealthcare devices have been introd...

متن کامل

Human Activity Recognition using Smartphone

Human activity recognition has wide applications in medical research and human survey system. In this project, we design a robust activity recognition system based on a smartphone. The system uses a 3-dimentional smartphone accelerometer as the only sensor to collect time series signals, from which 31 features are generated in both time and frequency domain. Activities are classified using 4 di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IOP conference series

سال: 2022

ISSN: ['1757-899X', '1757-8981']

DOI: https://doi.org/10.1088/1755-1315/1101/7/072008