Automata for learning sequential tasks

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR

Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...

متن کامل

Learning Sequential Decision Tasks

This paper presents a new approach called SANE for learning and performing sequential decision tasks. Compared to problem-general heuristics, SANE forms more e ective decision strategies because it learns to utilize domain-speci c information. SANE evolves neural networks through genetic algorithms and can learn in a wide range of domains with minimal reinforcement. SANE's evolution algorithm, ...

متن کامل

Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR

Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...

متن کامل

Local Learning Algorithms for Sequential Tasks in Neural Networks

In this paper we explore the concept of sequential learning and the efficacy of global and local neural network learning algorithms on a sequential learning task. Pseudorehearsal (a method developed by Robins [19] to solve the catastrophic forgetting problem which arises from the excessive plasticity of neural networks) is significantly more effective than other local learning algorithms for th...

متن کامل

Active Robot Learning for Sequential Object-directed Tasks

We explore active learning for high-level task learning. The active learning paradigm enables a robot to both resolve unintended ambiguities during the learning process and explore new parts of the state space, in order to create a more generalized task representation. This research builds upon a recent framework of embodied queries.We apply the embodied query framework to a new learning proble...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: New Generation Computing

سال: 1998

ISSN: 0288-3635,1882-7055

DOI: 10.1007/bf03037319