Attractors for Second Order Lattice Dynamical Systems
نویسندگان
چکیده
منابع مشابه
Random Attractors for Stochastic Retarded Lattice Dynamical Systems
and Applied Analysis 3 It is worth mentioning that in the absence of the white noise, the existence of a global attractor for 1.3 1.4 was established in 40 . The main contribution of this paper is to extend the method of tail estimates to stochastic retarded LDSs and prove the existence of a random attractor for the infinite dimensional random dynamical system generated by stochastic retarded L...
متن کاملInterpolation of Second Order Dynamical Systems
This semester, as an undergraduate research project, I worked with my mentor on coding and analyzing an algorithm for reducing second order MIMO system. The algorithm was taken from the article " Interpolatory Projection Methods for Structure-Preserving Model Reduction " by C. Beattie and S. Gugercin. It proved to be fairly challenging project for me, both from a mathematical and a programming ...
متن کاملNew Strange Attractors for Discrete Dynamical Systems
A discrete dynamical system in Euclideanm-space generated by the iterates of an asymptotically zero map f , satisfying |f(x)| → 0 as |x| → ∞, must have a compact global attracting set A. The question of what additional hypotheses are sufficient to guarantee that A has a minimal (invariant) subset A that is a chaotic strange attractor is answered in detail for a few types of asymptotically zero ...
متن کاملSecond Order Forward-Backward Dynamical Systems For Monotone Inclusion Problems
We begin by considering second order dynamical systems of the from ẍ(t) + Γ(ẋ(t)) + λ(t)B(x(t)) = 0, where Γ : H → H is an elliptic bounded self-adjoint linear operator defined on a real Hilbert space H, B : H → H is a cocoercive operator and λ : [0,+∞)→ [0,+∞) is a relaxation function depending on time. We show the existence and uniqueness of strong global solutions in the framework of the Cau...
متن کاملobservational dynamical systems
چکیده در این پایاننامه ابتدا فضاهای متریک فازی را به صورت مشاهدهگرایانه بررسی میکنیم. فضاهای متریک فازی و توپولوژی تولید شده توسط این متریک معرفی شدهاند. سپس بر اساس فضاهایی که در فصل اول معرفی شدهاند آشوب توپولوژیکی، مینیمالیتی و مجموعههای متقاطع در شیوههای مختلف بررسی شده- اند. در فصل سوم مفهوم مجموعههای جاذب فازی به عنوان یک مفهوم پایهای در سیستمهای نیم-دینامیکی نسبی، تعریف شده است. ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2002
ISSN: 0022-0396
DOI: 10.1006/jdeq.2001.4032