Atomic positive linear maps in matrix algebras

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Class of Linear Positive Maps in Matrix Algebras II

A class of linear positive, trace preserving maps in Mn is given in terms of affine maps in R n 2 −1 which map the closed unit ball into itself.

متن کامل

A Problem Relating to Positive Linear Maps on Matrix Algebras

As usually, a density matrix of M, is understood to be a non-negative matrix with trace equal to one. Thus, stochastic mappings are exactly those linear maps on M, which carry density matrices into density matrices. In this paper we shall deal with a particular case of the following problem concerning density matrices and stochastic transformations: Give necessary and sufficient conditions unde...

متن کامل

Irreducible Positive Linear Maps on Operator Algebras

Motivated by the classical results of G. Frobenius and O. Perron on the spectral theory of square matrices with nonnegative real entries, D. Evans and R. Høegh-Krohn have studied the spectra of positive linear maps on general (noncommutative) matrix algebras. The notion of irreducibility for positive maps is required for the Frobenius theory of positive maps. In the present article, irreducible...

متن کامل

Spectrum Preserving Linear Maps Between Banach Algebras

In this paper we show that if A is a unital Banach algebra and B is a purely innite C*-algebra such that has a non-zero commutative maximal ideal and $phi:A rightarrow B$ is a unital surjective spectrum preserving linear map. Then $phi$ is a Jordan homomorphism.

متن کامل

On the Structure of Positive Maps between Matrix Algebras

We will be concerned with linear positive maps φ : Mm(C) → Mn(C). To fix notation we begin with setting up the notation and the relevant terminology (cf. [7]). We say that φ is positive if φ(A) is a positive element in Mn(C) for every positive matrix from Mm(C). If k ∈ N, then φ is said to be k-positive (respectively k-copositive) whenever [φ(Aij)] k i,j=1 (respectively [φ(Aji)] k i,j=1) is pos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Publications of the Research Institute for Mathematical Sciences

سال: 1998

ISSN: 0034-5318

DOI: 10.2977/prims/1195144425