Atomic Force Microscope Images Molecules in 3D
نویسندگان
چکیده
منابع مشابه
Automated Dna Curvature Profile Reconstruction in Atomic Force Microscope Images
An automated algorithm is presented to determine the DNA molecule intrinsic curvature profiles and the molecular spatial orientations in Atomic Force Microscope images. The curvature is composed by static and dynamic contributions. The first one is the intrinsic curvature, vectorial function of the DNA nucletide sequence, while the second one is due to thermal noise. This algorithm allows to re...
متن کاملPhase imaging of moving DNA molecules and DNA molecules replicated in the atomic force microscope.
Phase imaging with a tapping mode atomic force microscope (AFM) has many advantages for imaging moving DNA and DNA-enzyme complexes in aqueous buffers at molecular resolution. In phase images molecules can be resolved at higher scan rates and lower forces than in height images from the AFM. Higher scan rates make it possible to image faster processes. At lower forces the molecules are imaged mo...
متن کاملForce Spectroscopy with the Atomic Force Microscope
Introduction and Review Atomic Force Microscope (AFM) Spectroscopy is an AFM based technique to measure, and sometimes control the polarity and strength of the interaction between the AFM tip and the sample. Although the tip-sample interaction may be studied in terms of the energy, the quantity that is measured first is always the tip-sample force, and thus the nomenclature: force spectroscopy....
متن کاملForce-feedback High-speed Atomic Force Microscope
High-speed atomic force microscopy (HSAFM) has enabled researchers to view the nanometer-scale dynamic behavior of individual biological and bio-relevant molecules at a molecular-level resolution under physiologically relevant time scales, which is the realization of a dream in life sciences. These high-speed imaging applications now extend to the cellular/bacterial systems with the use of a sm...
متن کاملScanned-cantilever atomic force microscope
We have developed a 3.6 pm scan range atomic force microscope that scans the cantilever instead of the sample, while the optical-lever detection apparatus remains stationary. The design permits simpler, more adaptable sample mounting, and generally improves ease of use. Software workarounds alleviate the minor effects of spurious signal variations that arise as a result of scanning the cantilev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physics
سال: 2019
ISSN: 1943-2879
DOI: 10.1103/physics.12.53