Atmospheric collapse in self-avoiding walks: a numerical study using GARM

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atmospheric Collapse in Self-Avoiding Walks: A Numerical Study using GARM

The coil-globule collapse of dilute linear polymers in a poor solvent is generally thought to be a second order phase transition through θ-polymers at the critical point [10]. A common model for the collapse transition of polymers is a lattice self-avoiding walk with a nearest neighbour attraction [10, 38]. In this paper we consider an alternative set of models for collapsing linear polymers. I...

متن کامل

Network exploration using true self-avoiding walks.

We study the mean first passage time (MFPT) of true self-avoiding walks (TSAWs) on various networks as a measure of searching efficiency. From the numerical analysis, we find that the MFPT of TSAWs, τ^{TSAW}, approaches the theoretical minimum τ^{th}/N=1/2 on synthetic networks whose degree-degree correlations are positive. On the other hand, for biased random walks (BRWs) we find that the MFPT...

متن کامل

Anisotropic Self - Avoiding Walks

We consider a model of self-avoiding walks on the lattice Zd with different weights for steps in each of the 2d lattice directions. We find that the directiondependent mass for the two-point function of this model has three phases: mass positive in all directions; mass identically −∞; and masses of different signs in different directions. The final possibility can only occur if the weights are ...

متن کامل

Prudent Self-Avoiding Walks

We have produced extended series for prudent self-avoiding walks on the square lattice. These are subsets of self-avoiding walks. We conjecture the exact growth constant and critical exponent for the walks, and show that the (anisotropic) generating function is almost certainly not differentiably-finite.

متن کامل

Extendable Self-avoiding Walks

The connective constant μ of a graph is the exponential growth rate of the number of n-step self-avoiding walks starting at a given vertex. A self-avoiding walk is said to be forward (respectively, backward) extendable if it may be extended forwards (respectively, backwards) to a singly infinite self-avoiding walk. It is called doubly extendable if it may be extended in both directions simultan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Statistical Mechanics: Theory and Experiment

سال: 2009

ISSN: 1742-5468

DOI: 10.1088/1742-5468/2009/12/p12005