Asymptotics of singular values for quantum derivatives
نویسندگان
چکیده
We obtain Weyl type asymptotics for the quantised derivative \dj \mkern 1muf of a function content-type="math/mathml"> f f from homgeneous Sobolev space alttext="ModifyingAbove upper W With dot Subscript d Superscript 1 Baseline left-parenthesis double-struck R right-parenthesis"> W ˙ d 1 ( R stretchy="false">) encoding="application/x-tex">\dot {W}^1_d(\mathbb {R}^d) on alttext="double-struck period"> . encoding="application/x-tex">\mathbb {R}^d. The asymptotic coefficient alttext="double-vertical-bar nabla f double-vertical-bar L Sub fence="false" stretchy="false">‖ L encoding="application/x-tex">\|\nabla f\|_{L_d(\mathbb R^d)} is equivalent to norm in principal ideal alttext="script comma normal infinity comma"> class="MJX-tex-caligraphic" mathvariant="script">L , mathvariant="normal">∞<!-- ∞ encoding="application/x-tex">\mathcal {L}_{d,\infty }, thus, providing non-asymptotic, uniform bound spectrum 1muf. Our methods are based alttext="upper C asterisk"> C ∗<!-- ∗ encoding="application/x-tex">C^{\ast } -algebraic notion symbol mapping d"> {R}^d , as developed recently by last two authors and collaborators.
منابع مشابه
Singular values of convex functions of matrices
Let $A_{i},B_{i},X_{i},i=1,dots,m,$ be $n$-by-$n$ matrices such that $sum_{i=1}^{m}leftvert A_{i}rightvert ^{2}$ and $sum_{i=1}^{m}leftvert B_{i}rightvert ^{2}$ are nonzero matrices and each $X_{i}$ is positive semidefinite. It is shown that if $f$ is a nonnegative increasing convex function on $left[ 0,infty right) $ satisfying $fleft( 0right) =0 $, then $$2s_{j}left( fleft( fra...
متن کاملAsymptotics at irregular singular points
• Introduction 1. Example: rotationally symmetric eigenfunctions on R 2. Example: translation-equivariant eigenfunctions on H 3. Beginning of construction of solutions 4. K(x, t) is bounded 5. End of construction of solutions 6. Asymptotics of solutions 7. Appendix: asymptotic expansions • Bibliography According to [Erdélyi 1956], Thomé [1] found that differential equations with finite rank irr...
متن کاملThe Asymptotics of Quantum
We investigate the rigidity and asymptotic properties of quantum SU(2) representations of mapping class groups. In particular we prove that the hyperelliptic mapping class groups do not have Kazhdan’s property (T). On the other hand, the quantum SU(2) representations of the mapping class group of the torus do not have almost invariant vectors, in fact they converge to the metaplectic representa...
متن کاملAsymptotics of eigenvalues for a class of singular Kreĭn strings
AKreı̆n string is (essentially) a pairS[L ,m]where 0 < L ≤ ∞ andm : [0, L) → [0,∞) is nondecreasing. Each string gives rise to an operator model, the Kreı̆n-Feller differential operator−DmDx acting in the space L2(dm). This operator has a selfadjoint realization which is nonnegative. Provided that L + limx→L m(x) < ∞, this realization has discrete spectrum and, when (λn) denotes the sequence of p...
متن کاملWeak log-majorization inequalities of singular values between normal matrices and their absolute values
This paper presents two main results that the singular values of the Hadamard product of normal matrices $A_i$ are weakly log-majorized by the singular values of the Hadamard product of $|A_{i}|$ and the singular values of the sum of normal matrices $A_i$ are weakly log-majorized by the singular values of the sum of $|A_{i}|$. Some applications to these inequalities are also given. In addi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2023
ISSN: ['2330-0000']
DOI: https://doi.org/10.1090/tran/8827