Asymptotically Optimal Balloon Density Estimates

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compression Techniques for Boundary Integral Equations - Asymptotically Optimal Complexity Estimates

Matrix compression techniques in the context of wavelet Galerkin schemes for boundary integral equations are developed and analyzed that exhibit optimal complexity in the following sense. The fully discrete scheme produces approximate solutions within discretization error accuracy offered by the underlying Galerkin method at a computational expense that is proven to stay proportional to the num...

متن کامل

Near-Optimal Coresets of Kernel Density Estimates

We construct near-optimal coresets for kernel density estimate for points in Rd when the kernel is positive definite. Specifically we show a polynomial time construction for a coreset of size O( √ d log(1/ε)/ε), and we show a near-matching lower bound of size Ω( √ d/ε). The upper bound is a polynomial in 1/ε improvement when d ∈ [3, 1/ε2) (for all kernels except the Gaussian kernel which had a ...

متن کامل

Asymptotically Optimal Deterministic Rendezvous

In this paper, we address the deterministic rendezvous in graphs where k mobile agents, disseminated at different times and different nodes, have to meet in finite time at the same node. The mobile agents are autonomous, oblivious, labeled, and move asynchronously. Moreover, we consider an undirected anonymous connected graph. For this problem, we exhibit some asymptotical time and space lower ...

متن کامل

Asymptotically optimal Boolean functions

The largest Hamming distance between a Boolean function in $n$ variables and the set of all affine Boolean functions in $n$ variables is known as the covering radius $\rho_n$ of the $[2^n,n+1]$ Reed-Muller code. This number determines how well Boolean functions can be approximated by linear Boolean functions. We prove that \[ \lim_{n\to\infty}2^{n/2}-\rho_n/2^{n/2-1}=1, \] which resolves a conj...

متن کامل

Asymptotically optimal block quantization

for the mean-square quantizing error where N is the. number of level&p(x) is the probability density of the input, and E’(x) is the slope of the compressor curve. The formula, an approximation based on the assumption that the number of levels is large and overI& distortion is negligible, is a useful tool for analytical studies of quantfzation. This paper gives a bedstlc argument generallhg Beme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Multivariate Analysis

سال: 1994

ISSN: 0047-259X

DOI: 10.1006/jmva.1994.1067