Asymptotically Linear Elliptic Equations Without Nonresonance Conditions
نویسندگان
چکیده
منابع مشابه
Bifurcation Problem for Biharmonic Asymptotically Linear Elliptic Equations
In this paper, we investigate the existence of positive solutions for the ellipticequation $Delta^{2},u+c(x)u = lambda f(u)$ on a bounded smooth domain $Omega$ of $R^{n}$, $ngeq2$, with Navier boundary conditions. We show that there exists an extremal parameter$lambda^{ast}>0$ such that for $lambda< lambda^{ast}$, the above problem has a regular solution butfor $lambda> lambda^{ast}$, the probl...
متن کاملbifurcation problem for biharmonic asymptotically linear elliptic equations
in this paper, we investigate the existence of positive solutions for the ellipticequation $delta^{2},u+c(x)u = lambda f(u)$ on a bounded smooth domain $omega$ of $r^{n}$, $ngeq2$, with navier boundary conditions. we show that there exists an extremal parameter$lambda^{ast}>0$ such that for $lambda< lambda^{ast}$, the above problem has a regular solution butfor $lambda> lambda^{ast}$, the probl...
متن کاملNonresonance Conditions for Arrangements
We prove a vanishing theorem for the cohomology of the complement of a complex hyperplane arrangement with coefficients in a complex local system. This result is compared with other vanishing theorems, and used to study Milnor fibers of line arrangements, and hypersurface arrangements.
متن کاملOn an Asymptotically Linear Elliptic Dirichlet Problem
where Ω is a bounded domain in RN (N ≥ 1) with smooth boundary ∂Ω. The conditions imposed on f (x, t) are as follows: (f1) f ∈ C(Ω×R,R); f (x,0) = 0, for all x ∈Ω. (f2) lim|t|→0( f (x, t)/t) = μ, lim|t|→∞( f (x, t)/t) = uniformly in x ∈Ω. Since we assume (f2), problem (1.1) is called asymptotically linear at both zero and infinity. This kind of problems have captured great interest since the pi...
متن کاملRegularity estimates for fully non linear elliptic equations which are asymptotically convex
In this paper we deliver improved C regularity estimates for solutions to fully nonlinear equations F (Du) = 0, based on asymptotic properties inherited from its recession function F (M) := lim μ→0 μF (μ−1M). MSC: 35B65, 35J70.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 1994
ISSN: 0022-0396
DOI: 10.1006/jdeq.1994.1118