Asymptotically almost periodic solutions of limit and almost periodic linear difference systems

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost Periodic and Periodic Solutions of Difference Equations

I t is easy to see that for every point (y, N) in WXI there is a solution (n) of (1) that satisfies <1>(N) =y. This solution is defined and unique on some set N^nKN*» where N<» is maximal. (That is, either iV» = °o or ^ i V ^ — l) (£W.) The solution may or may not be continuable for nƒ> rc)> 0^w<iV o o(^ , / ) , be the soluti...

متن کامل

Asymptotically Almost Periodic and Almost Periodic Solutions for a Class of Partial Integrodifferential Equations

In this note, we establish the existence of asymptotically almost periodic and almost periodic solutions for a class of partial integrodifferential equations.

متن کامل

Ergodicity and Asymptotically Almost Periodic Solutions of Some Differential Equations

Using ergodicity of functions, we prove the existence and uniqueness of (asymptotically) almost periodic solution for some nonlinear differential equations. As a consequence, we generalize a Massera’s result. A counterexample is given to show that the ergodic condition cannot be dropped. 2000 Mathematics Subject Classification. Primary 34C27, 43A60, 37Axx, 28Dxx.

متن کامل

Asymptotic equivalence of differential equations and asymptotically almost periodic solutions

In this paper we establish asymptotic (biasymptotic) equivalence between spaces of solutions of a given linear homogeneous system and a perturbed system. The perturbations are of either linear or weakly linear characters. Existence of a homeomorphism between subspaces of almost periodic and asymptotically (biasymptotically) almost periodic solutions is also obtained.

متن کامل

Weighted Pseudo Almost Automorphic and S-asymptotically Ω-periodic Solutions to Fractional Difference-differential Equations

We study weighted pseudo almost automorphic solutions for the nonlinear fractional difference equation ∆u(n) = Au(n+ 1) + f(n, u(n)), n ∈ Z, for 0 < α ≤ 1, whereA is the generator of an α-resolvent sequence {Sα(n)}n∈N0 in B(X). We prove the existence and uniqueness of a weighted pseudo almost automorphic solution assuming that f(·, ·) is weighted almost automorphic in the first variable and sat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Qualitative Theory of Differential Equations

سال: 2015

ISSN: 1417-3875

DOI: 10.14232/ejqtde.2015.1.75