Asymptotic properties of coverings in negative curvature

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Covering properties of meromorphic functions, negative curvature and spherical geometry

Every nonconstant meromorphic function in the plane univalently covers spherical discs of radii arbitrarily close to arctan √ 8 ≈ 7032 . If in addition all critical points of the function are multiple, then a similar statement holds with π/2. These constants are the best possible. The proof is based on the consideration of negatively curved singular surfaces associated with meromorphic functions.

متن کامل

Asymptotic properties of certain diffusion ratchets with locally negative drift

We consider two reflecting diffusion processes (Xt)t≥0 with a moving reflection boundary given by a non-decreasing pure jump Markov process (Rt)t≥0. Between the jumps of the reflection boundary the diffusion part behaves as a reflecting Brownian motion with negative drift or as a reflecting Ornstein-Uhlenbeck process. In both cases at rate γ(Xt − Rt) for some γ ≥ 0 the reflection boundary jumps...

متن کامل

Mannifolds of Negative Curvature

A C∞ function f on a riemannian manifold M is convex provided its hessian (second covariant differential) is positive semidefinite, or equivalently if (f ◦σ)′′ ≥ 0 for every geodesic inM . We shall apply this notion in a variety of ways to the study of manifolds of negative or nonpositive curvature. Convexity has, of course, long been associated with negative curvature, but convex function seem...

متن کامل

Asymptotic upper curvature bounds in coarse geometry

We define a notion of an asymptotic upper curvature bound for Gromov hyperbolic metric spaces that is invariant under rough-isometries and examine the basic properties of this concept.

متن کامل

Rigidity in Non-negative Curvature

In this paper we will show that any complete manifold of nonnegative curvature has a flat soul provided it has curvature going to zero at infinity. We also show some similar results about manifolds with bounded curvature at infinity. To establish these theorems we will prove some rigidity results for Riemannian submersions, eg., any Riemannian submersion with complete flat total space and compa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geometry & Topology

سال: 2008

ISSN: 1364-0380,1465-3060

DOI: 10.2140/gt.2008.12.617