Asymptotic Normality in Nonparametric Methods

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Rates and Asymptotic Normality for Nonparametric Neural Network Estimators

Barron (1993) obtained a deterministic approximation rate (in L2-norm) of r-l12. for a class of single hidden layer feedforward artificial neural networks (ANN) with r hidden units and sigmoid activation functions when the target function satisfies certain smoothness conditions. Hornik, Stinchcombe, White, and Auer (HSWA, 1994) extended Barron's result to a class of ANNs with possibly non-sigmo...

متن کامل

Asymptotic normality of a nonparametric estimator of sample coverage

This paper establishes a necessary and sufficient condition for the asymptotic normality of the nonparametric estimator of sample coverage proposed by Good [Biometrica 40 (1953) 237–264]. This new necessary and sufficient condition extends the validity of the asymptotic normality beyond the previously proven cases.

متن کامل

Asymptotic Normality of Parametric Part in Partially Linear Models with Measurement Error in the Nonparametric Part

We consider the partially linear model relating a response Y to predictors X T with mean function X g T when the T s are measured with additive error We derive an estimator of by modi cation local likelihood method The resulting estimator of is shown to be asymptotically normal

متن کامل

Consistency and Asymptotic Normality

The consistency and asymptotic normality of minimum contrast estimation (which includes the maximum likelihood estimation as a special case) is established if the sample is from a renewal process and the observation time tends to innnity. It is shown, that the conditions for consistency and asymptotic normality for maximum likelihood estimation are fulllled if the distribution of the time betwe...

متن کامل

Asymptotic Normality of Scaling Functions

The Gaussian function G(x) = 1 p 21⁄4 e¡x 2=2; which has been a classical choice for multiscale representation, is the solution of the scaling equation G(x) = Z R ®G(®x¡ y)dg(y); x 2 R; with scale ® > 1 and absolutely continuous measure dg(y) = 1 p 21⁄4(®2 ¡ 1) e¡y 2=2(®2¡1)dy: It is known that the sequence of normalized B-splines (Bn); where Bn is the solution of the scaling equation Á(x) = n ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Mathematical Statistics

سال: 1968

ISSN: 0003-4851

DOI: 10.1214/aoms/1177698323