ASYMPTOTIC EXPANSION OF THE BERGMAN KERNEL FOR TUBE DOMAIN OF INFINITE TYPE

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Asymptotic Expansion of Bergman Kernel

We study the asymptotic of the Bergman kernel of the spin Dirac operator on high tensor powers of a line bundle.

متن کامل

THE FIRST COEFFICIENTS OF THE ASYMPTOTIC EXPANSION OF THE BERGMAN KERNEL OF THE spin

We establish the existence of the asymptotic expansion of the Bergman kernel associated to the spin Dirac operators acting on high tensor powers of line bundles with non-degenerate mixed curvature (negative and positive eigenvalues) by extending [15]. We compute the second coefficient b1 in the asymptotic expansion using the method of [24].

متن کامل

The First Coefficients of the Asymptotic Expansion of the Bergman Kernel of the Spin Dirac Operator

We establish the existence of the asymptotic expansion of the Bergman kernel associated to the spin Dirac operators acting on high tensor powers of line bundles with non-degenerate mixed curvature (negative and positive eigenvalues) by extending [15]. We compute the second coefficient b1 in the asymptotic expansion using the method of [24].

متن کامل

study of cohesive devices in the textbook of english for the students of apsychology by rastegarpour

this study investigates the cohesive devices used in the textbook of english for the students of psychology. the research questions and hypotheses in the present study are based on what frequency and distribution of grammatical and lexical cohesive devices are. then, to answer the questions all grammatical and lexical cohesive devices in reading comprehension passages from 6 units of 21units th...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Korean Mathematical Society

سال: 2013

ISSN: 1015-8634

DOI: 10.4134/bkms.2013.50.1.285