Asymptotic error distribution for the Riemann approximation of integrals driven by fractional Brownian motion

نویسندگان

چکیده

We consider Riemann sum approximations of stochastic integrals with respect to the fractional Browian motion index H≥1 2. show convergence these schemes at first and second order. The processes obtained in limit case are Rosenblatt process if H>3 4 standard Brownian otherwise. These results under assumption that integrand is a “controlled” process. provide many examples such processes, particular semimartingales multiple Wiener-Itô integrals.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integral Inequalities for h(x)-Riemann-Liouville Fractional Integrals

In this article, we obtain generalizations for Grüss type integral inequality by using h(x)-Riemann-Liouville fractional integral.

متن کامل

Optimal pointwise approximation of stochastic differential equations driven by fractional Brownian motion

We study the approximation of stochastic differential equations driven by a fractional Brownian motion with Hurst parameter H > 1/2. For the mean-square error at a single point we derive the optimal rate of convergence that can be achieved by any approximation method using an equidistant discretization of the driving fractional Brownian motion. We find that there are mainly two cases: either th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Probability

سال: 2022

ISSN: ['1083-6489']

DOI: https://doi.org/10.1214/22-ejp852