Asymptotic behaviour of Bernoulli, Euler, and generalized Bernoulli polynomials

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new class of generalized Bernoulli polynomials and Euler polynomials

The main purpose of this paper is to introduce and investigate a new class of generalized Bernoulli polynomials and Euler polynomials based on the q-integers. The q-analogues of well-known formulas are derived. The q-analogue of the Srivastava–Pintér addition theorem is obtained. We give new identities involving q-Bernstein polynomials.

متن کامل

Asymptotic estimates for Apostol-Bernoulli and Apostol-Euler polynomials

We analyze the asymptotic behavior of the Apostol-Bernoulli polynomials Bn(x;λ) in detail. The starting point is their Fourier series on [0, 1] which, it is shown, remains valid as an asymptotic expansion over compact subsets of the complex plane. This is used to determine explicit estimates on the constants in the approximation, and also to analyze oscillatory phenomena which arise in certain ...

متن کامل

Large Degree Asymptotics of Generalized Bernoulli and Euler Polynomials

Asymptotic expansions are given for large values of n of the generalized Bernoulli polynomials B n (z) and Euler polynomials E n (z). In a previous paper López and Temme (1999) these polynomials have been considered for large values of μ, with n fixed. In the literature no complete description of the large n asymptotics of the considered polynomials is available. We give the general expansions,...

متن کامل

Arith . IDENTITIES CONCERNING BERNOULLI AND EULER POLYNOMIALS

We establish two general identities for Bernoulli and Euler polynomials, which are of a new type and have many consequences. The most striking result in this paper is as follows: If n is a positive integer, r + s + t = n and x + y + z = 1, then we have r s t x y n + s t r y z n + t r s z x n = 0 where s t x y n := n k=0 (−1) k s k t n − k B n−k (x)B k (y). It is interesting to compare this with...

متن کامل

New identities involving Bernoulli and Euler polynomials

Using the finite difference calculus and differentiation, we obtain several new identities for Bernoulli and Euler polynomials; some extend Miki’s and Matiyasevich’s identities, while others generalize a symmetric relation observed by Woodcock and some results due to Sun.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 1987

ISSN: 0021-9045

DOI: 10.1016/0021-9045(87)90071-2