Asymmetric vector moving average models: estimation and testing
نویسندگان
چکیده
منابع مشابه
Testing for Fundamental Vector Moving Average Representations
We propose a test for invertibility or fundamentalness of structural vector autoregressive moving average models generated by non-Gaussian independent shocks. We prove that in these models the Wold innovations are serially dependent if and only if the structural shocks are non-fundamental. This simple but powerful characterization suggests an empirical strategy to assess invertibility. We propo...
متن کاملModified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals
When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...
متن کاملA Comparison of Estimation Methods for Vector Autoregressive Moving-Average Models∗
Recently, there has been a renewed interest in modeling economic time series by vector autoregressive moving-average models. However, this class of models has been unpopular in practice because of estimation problems and the complexity of the identification stage. These disadvantages could have led to the dominant use of vector autoregressive models in macroeconomic research. In this paper, sev...
متن کاملMinimum Distance Estimation of Possibly Non-Invertible Moving Average Models
This paper considers estimation of moving average (MA) models with non-Gaussian errors. Information in higher order cumulants allows identification of the parameters without imposing invertibility. By allowing for an unbounded parameter space, the generalized method of moments estimator of the MA(1) model has classical (root-T and asymptotic normal) properties when the moving average root is in...
متن کاملRank-Based Estimation for Autoregressive Moving Average Time Series Models
We establish asymptotic normality and consistency for rank-based estimators of autoregressive-moving average model parameters. The estimators are obtained by minimizing a rank-based residual dispersion function similar to the one given in L.A. Jaeckel [Estimating regression coefficients by minimizing the dispersion of the residuals, Ann. Math. Statist. 43 (1972) 1449–1458]. These estimators can...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Statistics
سال: 2021
ISSN: 0943-4062,1613-9658
DOI: 10.1007/s00180-020-01056-1