Association Loss for Visual Object Detection
نویسندگان
چکیده
منابع مشابه
Crowdsourcing Annotations for Visual Object Detection
A large number of images with ground truth object bounding boxes are critical for learning object detectors, which is a fundamental task in compute vision. In this paper, we study strategies to crowd-source bounding box annotations. The core challenge of building such a system is to effectively control the data quality with minimal cost. Our key observation is that drawing a bounding box is sig...
متن کاملProbabilistic visual learning for object detection
We present an unsupervised technique for visual learning which is based on density estimation in high-dimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for a unimodal distribution) and a multivariate Mixture-of-Gaussians model (for multimodal distributions). These probability densities are th...
متن کاملFast Object Detection Method for Visual Surveillance
Most of the algorithms developed for object detection employ a background-subtraction technique which requires heavy computation. In this paper, we present a fast background-subtraction technique which can be readily applied to many existing object detection algorithms. The proposed technique consists of three parts: persistent background-subtraction, background-subtraction with nearby searchin...
متن کاملLearning visual context for object detection ∗
Kontekst ima pomembno vlogo pri splošnem zaznavanju prizorov, saj zagotavlja dodatno informacijo o možnih lokacijah objektov v slikah. Detektorji objektov, ki se uporabljajo v računalnǐskem vidu, tovrstne informacijo običajno ne izkoristijo. V članku bomo zato predstavili koncept, kako se lahko kontekstualne informacije naučimo iz primerov slik prizorov. To informacijo bomo uporabili za izračun...
متن کاملActive learning for visual object detection
One of the most labor intensive aspects of developing accurate visual object detectors using machine learning is to gather sufficient amount of labeled examples. We develop a selective sampling method, based on boosting, which dramatically reduces the amount of human labor required for this task. We apply this method to the problem of detecting pedestrians from a video camera mounted on a movin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Signal Processing Letters
سال: 2020
ISSN: 1070-9908,1558-2361
DOI: 10.1109/lsp.2020.3013160