منابع مشابه
On the Weak Lefschetz Property for Artinian Gorenstein Algebras of Codimension Three
We study the problem of whether an arbitrary codimension three graded artinian Gorenstein algebra has the Weak Lefschetz Property. We reduce this problem to checking whether it holds for all compressed Gorenstein algebras of odd socle degree. In the first open case, namely Hilbert function (1, 3, 6, 6, 3, 1), we give a complete answer in every characteristic by translating the problem to one of...
متن کاملGlobal Dimensions of Some Artinian Algebras
The structure of arbitrary associative commutative unital artinian algebras is well-known: they are finite products of associative commutative unital local algebras [6, pg.351, Cor. 23.12]. In the semi-simple case, we have the Artin-Wedderburn Theorem which states that any semi-simple artinian algebra (which is assumed to be associative and unital but not necessarily commutative) is a direct pr...
متن کاملApproach to Artinian Algebras via Natural Quivers
Given an Artinian algebra A over a field k, there are several combinatorial objects associated to A. They are the diagram DA as defined by Drozd and Kirichenko, the natural quiver ΔA defined by Li (cf. Section 2), and a generalized version of k-species (A/r, r/r2) with r being the Jacobson radical of A. When A is splitting over the field k, the diagram DA and the well-known Ext-quiver ΓA are th...
متن کاملAPPROXIMATE IDENTITY IN CLOSED CODIMENSION ONE IDEALS OF SEMIGROUP ALGEBRAS
Let S be a locally compact topological foundation semigroup with identity and Ma(S) be its semigroup algebra. In this paper, we give necessary and sufficient conditions to have abounded approximate identity in closed codimension one ideals of the semigroup algebra $M_a(S)$ of a locally compact topological foundationsemigroup with identity.
متن کاملGeneric Initial Ideals and Graded Artinian Level Algebras Not Having the Weak-lefschetz Property
We find a sufficient condition that H is not level based on a reduction number. In particular, we prove that a graded Artinian algebra of codimension 3 with Hilbert function H = (h0, h1, . . . , hd−1 > hd = hd+1) cannot be level if hd ≤ 2d + 3, and that there exists a level Osequence of codimension 3 of type H for hd ≥ 2d+k for k ≥ 4. Furthermore, we show that H is not level if β1,d+2(I ) = β2,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2012
ISSN: 0022-4049
DOI: 10.1016/j.jpaa.2011.05.006