Artinian and noetherian partial skew groupoid rings
نویسندگان
چکیده
منابع مشابه
Subrings of Artinian and Noetherian Rings
An easy consequence of this is that a left Noetherian (respectively left Artinian) ring which is finitely generated over its center is right Noetherian (respectively right Artinian). Theorem 1 follows easily from Theorem 2, which gives a partial converse to the following standard fact: IfR C S are rings, and ifQ is an injective R-module, then Hom~(S, Q) is an injective S-module (this follows, f...
متن کاملNoetherian and Artinian Lattices
Copyright q 2012 Derya Keskin T ¨ utüncü et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. It is proved that if L is a complete modular lattice which is compactly generated, then RadL/0 is Artinian if, and only if for every s...
متن کاملNoetherian Skew Inverse Power Series Rings
We study skew inverse power series extensions R[[y−1; τ, δ]], where R is a noetherian ring equipped with an automorphism τ and a τ -derivation δ. We find that these extensions share many of the well known features of commutative power series rings. As an application of our analysis, we see that the iterated skew inverse power series rings corresponding to nth Weyl algebras are complete, local, ...
متن کاملOn Prime Ideals of Noetherian Skew Power Series Rings
We study prime ideals in skew power series rings T := R[[y; τ, δ]], for suitably conditioned complete right noetherian rings R, automorphisms τ of R, and τ -derivations δ of R. Such rings were introduced by Venjakob, motivated by issues in noncommutative Iwasawa theory. Our main results concern “Cutting Down” and “Lying Over.” In particular, assuming that τ extends to a compatible automorphsim ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2018
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2018.02.007