Artificial photosynthesis: understanding water splitting in nature
نویسندگان
چکیده
منابع مشابه
Artificial photosynthesis: understanding water splitting in nature.
In the context of a global artificial photosynthesis (GAP) project, we review our current work on nature's water splitting catalyst. In a recent report (Cox et al. 2014 Science 345, 804-808 (doi:10.1126/science.1254910)), we showed that the catalyst-a Mn4O5Ca cofactor-converts into an 'activated' form immediately prior to the O-O bond formation step. This activated state, which represents an al...
متن کاملArtificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen
The maintenance of life on earth, our food, oxygen, and fossil fuels depend upon the conversion of solar energy into chemical energy by biological photosynthesis carried out by green plants and photosynthetic bacteria. In this process sunlight and available abundant raw materials (water, carbon dioxide) are converted to oxygen and the reduced organic species that serve as food and fuel. A long-...
متن کاملManganese-based Materials Inspired by Photosynthesis for Water-Splitting
In nature, the water-splitting reaction via photosynthesis driven by sunlight in plants, algae, and cyanobacteria stores the vast solar energy and provides vital oxygen to life on earth. The recent advances in elucidating the structures and functions of natural photosynthesis has provided firm framework and solid foundation in applying the knowledge to transform the carbon-based energy to renew...
متن کاملPhotosystem II: the water-splitting enzyme of photosynthesis.
The oxygen in our atmosphere is derived and maintained by the water-splitting process of photosynthesis. The enzyme that facilitates this reaction and therefore underpins virtually all life on our planet is known as photosystem II (PSII), a multisubunit enzyme embedded in the lipid environment of the thylakoid membranes of plants, algae, and cyanobacteria. During the past 10 years, crystal stru...
متن کاملWater splitting-biosynthetic system with CO₂ reduction efficiencies exceeding photosynthesis.
Artificial photosynthetic systems can store solar energy and chemically reduce CO2 We developed a hybrid water splitting-biosynthetic system based on a biocompatible Earth-abundant inorganic catalyst system to split water into molecular hydrogen and oxygen (H2 and O2) at low driving voltages. When grown in contact with these catalysts, Ralstonia eutropha consumed the produced H2 to synthesize b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Interface Focus
سال: 2015
ISSN: 2042-8898,2042-8901
DOI: 10.1098/rsfs.2015.0009