Arithmetical rings satisfy the radical formula

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost clean rings and arithmetical rings

It is shown that a commutative Bézout ring R with compact minimal prime spectrum is an elementary divisor ring if and only if so is R/L for each minimal prime ideal L. This result is obtained by using the quotient space pSpec R of the prime spectrum of the ring R modulo the equivalence generated by the inclusion. When every prime ideal contains only one minimal prime, for instance if R is arith...

متن کامل

On radical formula and Prufer domains

In this paper we characterize the radical of an arbitrary‎ ‎submodule $N$ of a finitely generated free module $F$ over a‎ ‎commutatitve ring $R$ with identity‎. ‎Also we study submodules of‎ ‎$F$ which satisfy the radical formula‎. ‎Finally we derive‎ ‎necessary and sufficient conditions for $R$ to be a‎ ‎Pr$ddot{mbox{u}}$fer domain‎, ‎in terms of the radical of a‎ ‎cyclic submodule in $Rbigopl...

متن کامل

Localization of injective modules over arithmetical rings

It is proved that localizations of injective R-modules of finite Goldie dimension are injective if R is an arithmetical ring satisfying the following condition: for every maximal ideal P , RP is either coherent or not semicoherent. If, in addition, each finitely generated R-module has finite Goldie dimension, then localizations of finitely injective R-modules are finitely injective too. Moreove...

متن کامل

On Some Rings of Arithmetical Functions

In this paper we consider several constructions which from a given B-product ∗B lead to another one ∗̃B . We shall be interested in finding what algebraic properties of the ring RB = 〈CN, +, ∗B 〉 are shared also by the ring RB̃ = 〈C N, +, ∗B 〉. In particular, for some constructions the rings RB and RB̃ will be isomorphic and therefore have the same algebraic properties. §

متن کامل

Radical Extensions of Rings

Jacobson's generalization [5, Theorem 8] of Wedderburn's theorem [8] states that an algebraic division algebra over a finite field is commutative. These algebras have the property that some power2 of each element lies in the center. Kaplansky observed in [7] that any division ring, or, more generally, any semisimple ring, in which some power of each element lies in the center is commutative. Ka...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Commutative Algebra

سال: 2012

ISSN: 1939-2346

DOI: 10.1216/jca-2012-4-2-293