Arithmetic properties of projective varieties of almost minimal degree
نویسندگان
چکیده
منابع مشابه
On Varieties of Almost Minimal Degree I : Secant Loci of Rational Normal Scrolls
To provide a geometrical description of the classification theory and the structure theory of varieties of almost minimal degree, that is of non-degenerate irreducible projective varieties whose degree exceeds the codimension by precisely 2, a natural approach is to investigate simple projections of varieties of minimal degree. Let X̃ ⊂ P K be a variety of minimal degree and of codimension at le...
متن کاملOn Varieties of Almost Minimal Degree Ii: a Rank-depth Formula
We show that the arithmetic depth of the projection Xp of a rational normal scroll X̃ ⊂ P K from a point p ∈ P K \X̃ can be expressed in terms of the rank of the matrix M ′(p), where M ′ is the matrix of linear forms whose 3× 3 minors define the secant variety of X̃.
متن کاملcontrol of the optical properties of nanoparticles by laser fields
در این پایان نامه، درهمتنیدگی بین یک سیستم نقطه کوانتومی دوگانه(مولکول نقطه کوانتومی) و میدان مورد مطالعه قرار گرفته است. از آنتروپی ون نیومن به عنوان ابزاری برای بررسی درهمتنیدگی بین اتم و میدان استفاده شده و تاثیر پارامترهای مختلف، نظیر تونل زنی(که توسط تغییر ولتاژ ایجاد می شود)، شدت میدان و نسبت دو گسیل خودبخودی بر رفتار درجه درهمتنیدگی سیستم بررسی شده اشت.با تغییر هر یک از این پارامترها، در...
15 صفحه اولThe Euclidean Distance Degree of Smooth Complex Projective Varieties
We obtain several formulas for the Euclidean distance degree (ED degree) of an arbitrary nonsingular variety in projective space: in terms of Chern and Segre classes, Milnor classes, Chern-Schwartz-MacPherson classes, and an extremely simple formula equating the Euclidean distance degree of X with the Euler characteristic of an open subset of X.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebraic Geometry
سال: 2007
ISSN: 1056-3911,1534-7486
DOI: 10.1090/s1056-3911-06-00442-5