Arithmetic into geometric progressions through Riordan arrays

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partitions of Zn into arithmetic progressions

We introduce the notion of arithmetic progression blocks or m-AP-blocks of Zn, which can be represented as sequences of the form (x, x+m,x+2m, . . . , x+ (i−1)m) (mod n). Then we consider the problem of partitioning Zn into m-APblocks. We show that subject to a technical condition, the number of partitions of Zn into m-AP-blocks of a given type is independent of m, and is equal to the cyclic mu...

متن کامل

Arithmetic and Geometric Progressions in Productsets over Finite Fields

Given two sets A,B ⊆ IFq of elements of the finite field IFq of q elements, we show that the productset AB = {ab | a ∈ A, b ∈ B} contains an arithmetic progression of length k ≥ 3 provided that k < p, where p is the characteristic of IFq, and #A#B ≥ 3q 2d−2/k. We also consider geometric progressions in a shifted productset AB + h, for f ∈ IFq, and obtain a similar result.

متن کامل

On the intersection of infinite geometric and arithmetic progressions

We prove that the intersection G ∩A of an infinite geometric progression G = u, uq, uq2, uq3, . . . , where u > 0 and q > 1 are real numbers, and an infinite arithmetic progression A contains at most 3 elements except for two kinds of ratios q. The first exception occurs for q = r1/d , where r > 1 is a rational number and d ∈ N. Then this intersection can be of any cardinality s ∈ N or infinite...

متن کامل

On rainbow 4-term arithmetic progressions

{sl Let $[n]={1,dots, n}$ be colored in $k$ colors. A rainbow AP$(k)$ in $[n]$ is a $k$ term arithmetic progression whose elements have different colors. Conlon, Jungi&#039;{c} and Radoiv{c}i&#039;{c} cite{conlon} prove that there exists an equinumerous 4-coloring of $[4n]$ which is rainbow AP(4) free, when $n$ is even. Based on their construction, we show that such a coloring of $[4n]$...

متن کامل

Generalized Riordan arrays

In this paper, we generalize the concept of Riordan array. A generalized Riordan array with respect to cn is an infinite, lower triangular array determined by the pair (g(t), f(t)) and has the generic element dn,k = [t/cn]g(t)(f(t))/ck, where cn is a fixed sequence of non-zero constants with c0 = 1. We demonstrate that the generalized Riordan arrays have similar properties to those of the class...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2017

ISSN: 0012-365X

DOI: 10.1016/j.disc.2016.08.017